
Applicable to all Amigas

Easy and Powerful Programming

Hands-on Tuturial and Guide

1 . I
Bruce Smith Books

astering Amiga
A OS

Revised Edition

Phil South

Bruce Smith Books

Mastering Amiga AMOS

to Phil South
ISBN: 1-873308-19-1 Revised Edition: May 1993
(Previously published October 1992 under ISBN: 1-873308-12-4)

Editor: Mark Webb
Typesetting: Bruce Smith Books Limited

All Trademarks and Registered Trademarks used are hereby
acknowledged.

E&OE

All rights reserved. No part of this publication may be reproduced or
translated in any form, by any means, mechanical, electronic or
otherwise, without the prior written permission of the copyright
holder.

Disclaimer: While every effort has been made to ensure that the
information in this publication (and any programs and software
associated with it) is correct and accurate, the Publisher cannot accept
liability for any consequential loss or damage, however caused, arising
as a result of using the information printed herein.

Bruce Smith Books is an imprint of Bruce Smith Books Limited.

Published by:
Bruce Smith Books Limited, PO Box 382, St. Albans, Herts, AL2 3JD.
Telephone: (0923) 894355 — Fax: (0923) 894366.

Registered in England No. 2695164.
Registered Office: 51 Quarry Street, Guildford, Surrey, GU1 3UA.

Printed and bound in the UK by Ashford Colour Press, Gosport.

The Author
Phil South is a writer and journalist, who started writing for a living in
1984, when he realised he couldn’t actually stand working for anyone
but himself. He says his popular columns in magazines such as
Computer Shopper, Amiga Format and Amiga Computing are much
harder to write than they are to read. Apart form being a writer, he’s a
heavy duty film buff and owns an ever growing archive of ex-rental
and sell-through videos. He’s just at the moment agonising over the
benefits of Laserdisc, although he admits that’s just because it's a
gadget. His hobbies are watching movies on video, flying model
rockets, and he has recently revived an interest in conjuring, although
he says interest and proficiency are two different things.

Phil Lives in Somerset with his wife Stacey, daughter Harriet Rose and
more videos than a small branch of Our Price Records.

Mastering Amiga AMOS

Contents
Preface
Without Whom

1: Introduction to AMOS ..
AMOS Genesis
After STOS

The Future

2: Basic Principles
How AMOS Works
The Editor
AMOS Editor Commands
System Menu
Blocks Menu
Search Menu
Using the Mouse
Direct Mode
Compressing Graphics
The Config Program

AMOS Compiler and AMOS 3-D
TOME..................................... ..
So That’s AMOS

3: Program Structures
Dem Bones, Dem Bones
Proc and Roll
What’s Up, Procs?
Going Loopy
Various Variables
Are You Def?
Daddy Pop
Cooking with AMAL............... ..

I I n I Q I I a p | Q p p J Q - - '1

l D I I I I I I I I I I I I I I I 0 D I I I O I I I I I I I l l I I I Q I i I I I II

u Q u M u u n n n I I - I I Q U I I I I I I I I Q I Q Q I Q Q n n - n n a n ; Q Q I.

I I - I I I I I I I I I I . Q . I I I I I . _ . — I Q I I I I I I I ‘ . . . I I I I.

I O O I I I I II

I I I I I I O I I I I U I l I I I I I I I I I I I I I I I Q Q Q Q | | Q Q Q Q Q ¢ I I

- . - I I - Q F I

I Q I Q Q - Q I I I I I I . I I - I - I I

I I I I I I I I I I I I I . I I I I I I I I I I I I I I I I I Q . Q I I I I I I I I I

I Q I I I U I I I I I I I I U I I I I I I I . I I ' I I — Q I I I I I I I I I I I II

... ..37
I I I I I I O I O I I I I I I I I I I I I II

I l I I I I I O I I U Q 0 n Q I n I I I I I I

I I I i I I I I I I I I I I I I I I I I O I Q I I I I I I I I I I I I I I I I ‘] II

I I I I I I I I I I I I O I I I I I I I U I I h I I I I I q p Q Q p q Q I Q Q J | 1|

I I I I I l I I I I I I I l I I I I I I I I I I O I I O i I I I I I I I I I I I I II

U I I I I . I I I I I I D I I I I I I U I I I I Q I Q I I I I I I I I I I I I I I II

I I I I I I I I I I I I I I I I U I I I I I I I I ' Q Q ' Q Q | Q | | | Q Q | | I II

I I

Contents
I

....l3

.....16

....l7

.....18

.....l9

.....2O

....2l

.....22

.....23

.....24

.....25 I

.....26 .

.....27

.....3O

.....31

.....32

.....34

.....34

.....35

.....35

.....37

.....38

.....41

.....41

.....43

.....44

.....-45

.....45

Mastering Amiga AMOS

| Music and Graphics
More Variable than Not

4: Graphics
Painting with Maths
Drawing on the Screen
Pretty Polys
Warp-Factor 2
Req the Place

I Over the Rainbow
Ello Ello Ello
Rainbow Ping
Moving Rainbows
Footnote

5: Screens
Screen Open
Interlaced Screens
Hide and Seek
Dual Playfield
Display that Screen!
Screen Clone
Special FX
More Special FX
Let’s Splerge!

6: Windows, Text and Menus
Clean Windows
Slide, Charlie Brown
No Text Please
Two Types Text
A Word about CText
Curse of the Cursors
Simple Menus

More Advanced Menus
Graphic Menus
Cursor the Crimson Altar II.
Hyper Hypertext

7: CText101
... ..1o1
... ..102

... ..103

... ..105

... ..107

... ..108

I, CText

Installing
Using CText
CText Commands
Making a CText Font

CText, How Easy It ls

8: Maths Functions 109
... ..109
... ..11O
... ..110
... ..111

... ..111

... ..l13
Fractal Maths114

.. ..116 '
... ..116 =
... ..119

Let’s Talk about Maths
Basic Functions
AMOS Maths
A Few Degrees
A Slice of Pl
Trigonometry Fountain

More AMOS Maths Functions
Gimme a Vector, Victor
Bone Up Your Maths

9: Sprites and Bobs121
... ..122
.. ..123

... ..123

... ..125

... ..125 '

... ..129

... ..130

... ..132

Don‘t Get Confused
Creation of Sprites and Bobs
Animation
Moving
Collision Detection
Sprite Viewing
Bullets
For Your Information

Contents
M

94 -

... ..96

... ..97

... ..lOO

Mastering Amiga AMOS

10: SpriteX133
Right Tool for the Right Job133
New Features135
New Buttons135
Niceness Mods136
C’mere, there’s More137
How Does that Grabber You?137
Animation Station138
Sprite Xtras139
SpriteX 2.0139

Gotcha!140

ll: Object Movement141
Moving Experience141
Deep joy146

Keyboard Controls150
Put it All Together151
New Control Extensions155
Moving Faster?155

12: Introducing AMALl57
Using AMAL158
Command Set159
Using AMAL Editor16O
Sprite Movement161
Sprite Animation161
AMAL On!162
When I Say jump162
Put it all Together163
BOING!164
Extreme AMAL166
Joystick juggling... ..l68

13: Advanced AMALl7l
Another AMOS Editor

Through Channel Tunnels
Environment Editor
Bugs R Us
Holy Scrolly Screens
Autotest

AMAL games

l’m a Game, Build Me!

14: Icons and Screen Blocks185
... ..186
... ..186

... ..188

... ..189

... ..19O

... ..191

Tiling for Beginners
Icon Do That!
Blocks Away!
A Block Alert

Get Block Put Block
Advanced Blocking

I U I I I I I I I I I I I Q I I I I I I I I I I I I II

Q [I Q I I Q II

Q ' Q Q Q Q Q I Q Q I OI

Contents
it

...172

...173

...173

...174

...176

...178

...18O .

...183

15: AMOS TOMEl93
TOMEing About
Installing TOME
The TOME Editor
Configuring TOME
Auto Parts
The TOME Command Set.
TOME Docs
More Goodies
TOME Series 4

Don’t Just Sit There

16: Music and Sound203
Using Trackers204
Converting

Music Engine

... ..199

... ..2OO

... ..2OO

I U I I ll

I I I I I I I O I I I I I U I U I I I I I I I U I I I I II

... ..l93

... ..194

... ..196

... ..197

... ..197

..198

..20l

..206

..206

Mastering Amiga AMOS

Sampling Your Own208
Samplers208
Using Samples in AMOS209
Using the Sound Chip212
Noisy Drums213
Sound Advice214

17: I/O and Disk Ops2l5
Disk Ops216
Running AMOS Programs217
Disk Files218
Yes We Have No LLIST218
Scancode ... "219
Outside AMOS219
A PS220

18: Advanced AMOS22l
Multitasking with AMOS222
Machine Code223
AMOS Assembler?224
Speech Demons225
Sorting and Storing226
Are you DIM?227
Program Enhancements233
NEO Converter234
Onwards to the Future236

19: AMOS Compiler237
Compile Me238
Using the Compiler239
Fine Tuning24O
Using the Front End241
Commercial Release242
Good Vibrations242

20: AMOS 3D245

21

22

Contents
it

Compiler Hints and Tips242
More Dimensions243

A 3D World246
AMOS OM246
More AMOS 3D248
Using Objects249
Summing Up251

AMOS Professional253
Why Pro?254
New Kid on the Block254
AMOS Engine255
New Features of AMOS Pro257
Physical Differences262
AMOS Intelligence264

The File Selector264
Pull Down Menus265
Macros266
User Menu266

What Do I Think?267

Easy AMOS.. ..269
Easy as PI270
Wot? No AMAL?270
Simple Setup271
Bob’s Your Uncle272
Omissions273
Nice Weather for Docs273 ,
lt’s Good, but is it Art?274

Mastering Amiga AMOS

23: Where to from Here?2 75
The AMOS Club276

Totally AMOS276
AmoNER277
PLAYFIELD!2 77

AMOS Columns278

Contacts278

Appendix

A: AMOS Error Messages28l
AMOS Error Messages282

B: Some Useful Programs297

C: Program Entry319
Entering Book Listings319

Visual Errors321

D: The ASCII Character Set323

E: Mastering Amiga Guides327

Index339

ea
Preface

There was a period of time
when nobody but the most
talented and mathematically
trained people could program
a powerful computer like the
Amiga. All that changed with
the release of AMOS.
AMOS has been out for about
five years now, and in that
time it’s become a standard
way for most normal human
beings to program their Amiga
in ways previously out of their
grasp. AMOS is loosely based
on the old BASIC programming
language, but AMOS is
carefully slanted towards the
use of graphics and sound to
make the best use of your
Amiga.
You may have used a BASIC
program before and not stuck
at it because it was too
difficult to get gratifying
results. You won’t have that
problem with AMOS. You
might have tried to learn a
BASIC program before but
given up because it was too
complex. AMOS is simple.
Don’t think that you can never
program in BASIC, as if you’re
too old or too young or too
stupid to take something like
this on. That’s rubbish! If you
can read or write or draw a
stick man you can program in
AMOS, and once you have the
basics down, you'll never
believe how easy the rest of it
comes flooding along. You
won’t believe the pleasure you
can get from programming,
solving problems and creating
your own software.

Mastering Amiga AMOS

The reasons I'm doing this book are twofold, threefold if you count
doing it for the money, which being a new father I have to consider.
That aside the motivation behind it is all too simple:
1. To instruct you in how to use AMOS as a moderate beginner.
2. To popularise the use of AMOS for things that you may not

think of using it for, ie for other things as well as games.
AMOS is a remarkably flexible and easy to use programming tool,
and like any kind of programming language it's only with use that it
actually starts to make sense. You have to use the program before
you can get any idea of how it does what it does, and why you'd
want to do it, whatever it might be. What kinds of programs would
you like to own? Are the ones you can buy not really what you were
looking for? Well why not write your own software? Programming
isn't about dry learning from books,~it's about experience, and with
a new programming language the quicker you get that experience
the better.
So this book is packed with examples for you to type in and try out.
There is one very good way to embed things into your memory, and
that is to do. Type in short programs and run them, debug them
and re-use them in your own programs. In the words of some really
smart old dead guy When you see, you know. When you do, you
understand. Fiendishly clever, these Chinese.
One important point I would draw your attention to is that although
you can probably take to AMOS right off the bat, it's not going to
hurt you to have experience of AmigaBasic (or any other BASIC)
before you begin. Obviously if you have no idea about
programming or BASIC itself then it might be an idea to read an
excellent AmigaBasic guide book, or better still the brilliant
Illustrating Basic by Donald Alcock, before you embark upon AMOS.
It's not really my mission to teach you BASIC here, or the principles
of programming. Although as a by product, teaching you AMOS may
be just the thing you need to learn BASIC. (Take a deep breath and
read that last sentence again before you ignore it!)
Having said that, I've done my best to create a book that's all things
to all men, but as usual this is quite difficult. The tutorials are
fairly lightweight at the start of each chapter, and much heavier at
the end, so each chapter builds up to a climax by which time you
should have an idea what I'm blathering on about. I've put in as
much detail about what programming is, how it works and why you
should do it, as I can. Frankly the rest is up to you, sunbeam.

Preface

Tech Talk
The raw text for this book was written on a combination of Protext
5.5 on an Amiga 2000, Word 4 on an Apple Macintosh Ilsi, Windows
Write on a Commodore LT286 laptop, and the Editor program on an
Atari Portfolio. I like to be able to write on a number of things, as
this keeps me fresh, and not only that but if I use any of the
portables I can sit in the garden sunning myself while I work, like I
am at the moment!
The AMOS programs were saved as text from AMOS itself, and
pasted into my word processor at the time, so the code has not
been changed in any way from the time it was running perfectly on
AMOS. (If any typos creep in during the process of making the book,
I blame Bruce but then again he'll blame me so I guess we're even!
Only kidding.)
The raw text was all converted using my old (but worth its weight
in gold) Readysoft A-Max ll Mac Emulator on the Amiga and then
saved to a Mac disk, and then transferred to Word 4 on the Mac Ilsi,
reformatted, spell checked and prettied up, and finally saved to
disk and sent to Bruce who did all the typesetting on his Mac.
(Phew.) The pictures were grabbed using a Datel Action Replay II
inside my Amiga 2000, chopped over to Mac disk using the process
described above, and finally converted to Mac format by Bruce
using Adobe Photoshop 2.0.
The AMOS version used for this book was version 1.34, and if you
know what's good for you you'll use that version too! Although any
version of AMOS from Easy AMOS through to Amos Pro will do.

Notes to the 2nd Edition
This book has been extensively revised over the last year, partly
through personal investigation and partly through having to use
the program to do my various AMOS columns in the UK and USA. As
I said before, reading about the program is as nothing to actually
using it, and over the last year I've uncovered more undocumented
commands and tricks and incorporated them all in this new
revision of the book. As far as AMOS is concerned, AMOS
Professional still hasn't really taken over as the leading AMOS
product. Bugs still dog the new version and although it has a lot of
features over classic AMOS, you still can't find professional users
who can hold up their hand and say they trust it fully. This
situation will change eventually, and hopefully by the time I come
around to revising this book again AMOS Pro Compiler will be out
and I'll have a more convincing argument for using the big brother
of classic AMOS. For the time being though the situation is that
classic AMOS is still the programming engine of choice.

Mastering Amiga AMOS

The original version of AMOS has actually been given away free
with both Amiga Format and CU Amiga magazines with CU also
giving away a copy of AMOS Compiler. AMOS can still be bought in
the shops, as can EASY AMOS, but mostly the latter is billed as a
tutorial and easy way into the AMOS programming family. I've
included more on AMOS Professional so you can see the sort of
power which it ofers you. Some commmentators say that AMOS Pro
is simply AMOS 1.34 with a fancy interface and a couple more
fetaures bolted on, but I can't confirm or deny this. Certainly a lot
of the features in Pro are in 1.34 and the new version 1.35 of classic
AMOS, albeit undocumented. It doesn't really matter which version
you use, you will still get a lot out of this book.
Many Thanks
Thanks are due to Bruce Smith for asking me to do this book and
for selling my first one so well, Stacey and Harriet (my wife and
daughter) for putting up with me writing another book and how
unbearable that makes me to live with. Also many thanks to
Europress Software for all their help in solving technical problems,
giving out information and upgrades, and generally being into the
project from the start. Thanks also to Aaron Fothergill, Richard
Vanner, Peter Hickman and Sandra Sharkey for all their help on
technical matters and things which I didn't know about, particularly
to Aaron for all the advice he contributes to my various columns.
Lastly, on a sombre note this book is dedicated to the memory of
the late Kevin Hall, ace writer, AMOS conference moderator on CIX,
and all round good egg who died young and for no reason at all.
Words really are far too inadequate. See you later, Kev.

Phil South, Somerset, April 1993

ea
1:
Introduction
toAMOS

If you bought your Amiga
wanting to create your own
programs rather than just
enjoying other people's
creations, it must be very
frustrating for you to discover
how hard it is to create
something on a modern
computer. You are in luck,
however, because in the 1990s
AMOS has taken away all that
difficult learning from you,
and given you an easy method
of creating slick and
professional looking and
sounding programs in very
little time. You can load in
sounds and graphics and have
them all at your disposal
through simple BASIC
language commands, enabling
you to create not just game
programs, but also utilities,
applications and even
operating systems, of a kind.
All kinds of games and
programs can be made and
compiled into machine code
for placing in the Public
Domain or selling to the
world, and all for very little
outlay. Your biggest asset is
the one between your ears.
AMOS has been a long time in
the making, and although now
it’s the engine of choice for
anyone wishing to develop a
program without the need for
machine code or C, it's taken a
while to get to that stage.
Although it began life on the
Atari ST, it's found a home on
the Amiga, being the more
powerful computer. Ever since
the creator of AMOS, Francois

Mastering Amiga AMOS

Lionet, first began to create AMOS, he fell in love with the Amiga’s
beautiful graphics and sound, and he's been very loyal to the
machine ever since.

AMOS Genesis
Francois was working as a veterinary surgeon in his native France,
and programming on his Atari ST in his spare time, when he came
up with the forerunner of AMOS, an ST program called STOS.
The program grew out of a need for an easy way of creating games
on the ST, the earliest I6 bit mass market computer. The ST had
good graphics, tolerable sound, and was streets ahead of the
competition. (The Amiga wasn't really around much yet, I hasten to
add.) But programming it meant either tapping in code in the form
of assembly language, or C, and compiling it. This was a very
specialised job, and not really possible for beginners to computers
to learn easily. BASIC was easy to learn, but lacked any real punch
in the sound and graphics department, which was what was needed
for games on a I6 bit computer. So Francois set himself the task of
trying to write a version of BASIC which had all the power of
machine code but in a simple to use language.
The first lines of code were written in December 1986, and the
French version of STOS was released to an unsuspecting French
public on November of 1987. They were so unsuspecting in fact
that in Francois’ own words it was a "Total flop, we only had around
50 sales!"
In the Spring of 1988 however a chance contact with Europress
(then Mandarin) Software's Richard Vanner secured a deal for the
UK release of STOS. A lot more work was done on the program to
make it faster and more attractive, and in the Autumn of 1988 the
program was released with all the hype and coverage usually
reserved for a game program.
The program was an almost immediate success, and prompted the
creation of the STOS Compiler in February 1989 to fill the need for
still more speed and power. Once a program had been written in
STOS, it could then be compiled into fast machine code, making any
program you wrote in STOS as fast and as powerful as if you'd
coded it from scratch.
STOS gained a lot of followers all over Europe, and envious glances
from the new Amiga camp. The Amiga was a newer computer, had
more powerful features but had no such easy way of getting to all
its important little places like its superb stereo sound and 4096
colour graphics. This was soon to change forever.

Introduction to AMOS

AfierSTOS
The original STOS program was crude by modern standards, it had
line numbers (like all old fashioned BASlCs) and all the direct mode
commands were entered without a line number on the same screen.
Modern compilers and interpreters had a lot more going for them in
the interface stakes, and this was something that had to be
addressed if STOS was going to move on in any way.
Francois knew there had to be a next step, and it wasn't long before
it happened. “The ST version was over" he told me. “The Amiga is
rising in popularity all over the World, so I thought it was time to
program the Amiga version of STOS. As soon as I discovered the
Amiga, I realised that AMOS, as the Amiga version of STOS would be
called, would have to he totally re-written to make use of the
enormous power of the Amiga. I also wanted to make AMOS a more
modern computer language, without line numbers and with a good
editor. "
Programming on the new version started in April 1989, then
stopped again abruptly in March 1990 when Francois was called up
by the French Army for his National Service. AMOS was nowhere
near finished, and so he took his Amiga and PC with him to Boot
Camp, and programmed in his room after hours. "I still managed to
work, " he says, “but what a stress!" In the end he had to move out
his computer equipment to a place near his mother's house, and
this meant that in his time off he could work in peace and quite.
AMOS was duly finished after 14 months, and version 1.1 was
released in June 1990.
In September of that same year Francois upgraded the system
based on customer feedback, and version 1.21 was released into
the Public Domain. Upgrade disks were PD for convenience, and for
security reasons they updated the previous system rather than
being a new stand alone program. But the upgrades were free to all
users, and this was one of the great strengths of the system which
still prevails to this day.
But everyone was waiting for the AMOS Compiler. Some people are
on record as saying it couldn't be done, and if it could be done it
wouldn't be very good. But as usual Francois proved them wrong
and in September 1990 he began work on this mammoth task. Not
only must the compiler compile AMOS programs into machine code,
but the resultant code had to be runable from the CLI, the
Workbench or from within AMOS. The program was to have a front
end, for ease of use, or just a plain CLI runable version for
codeheads who can't relate to front ends! In between starting the
compiler project and finishing it, Francois also made substantial

Mastering Amiga AMOS

upgrades and fixes to the system in version 1.23, released in
December 1990, and in March 1991 released a French version of
AMOS, and finished his National Service (with a big sigh of relief).
Suitably recovered from his stint in the military, Francois put the
finishing touches to AMOS Compiler and made a new version of
AMOS to support it, version 1.3, which were both released
eventually in June 1991.
Meanwhile working away in seclusion Voodoo Software were at
work on a secret project for AMOS, which emerged as AMOS 3D in
July 1991. This was a bolt on extension to the language which
enabled users to create 3D vector graphics objects and animate
them at speed within AMOS programs. The program is the first such
commercial product on the market, soon followed by a few more
limited imitators, both PD and commercial programs. At the same
time AMOS 3D was knocking them dead, work began on Easy AMOS,
a beginners product aimed at first time programmers and children.
The project seemed like a doddle at first but actually took over 8
months to complete.
Easy AMOS was finally complete in February 1992, and as well as
this a newer version of AMOS was released, version 1.34, and a new
version of the compiler too. Easy AMOS was released in April 1992,
and was followed in May by the long awaited release of AMOS in
German.
Despite being five years old, AMOS continues to go from strength to
strength, and as the program develops and changes, so too do the
uses and possibilities for the program in the future.

The Future
AMOS Professional, has been out since late 1992 and is gradually
gaining ground, although initial bug lists ran to several pages of A4.
The AMOS Pro Compiler arrived just after the completion of this
second edition, and so no details are extant of how effective this is.
The original AMOS compiler was not optimising so all the libraries
needed for all aspects of AMOS were included in every compiled
program, making the code bigger than it needed to be. A multiple
pass compiler by a third party has been rumoured for some time,
although at the time of going to press this still hadn't emerged.
Whatever the immediate future of AMOS, you can bet that it's not
going away.

er||
2:
Basic
Principles

AMOS is a programming
language, but like most
languages it takes a little time
to learn it. You have to get to
know a little bit of the lingo at
a time, a bit like learning a
foreign language in the real
world. If you want to learn
French really well, go and
plonk yourself with a guide
book in the middle of Paris for
a month or three. You'll be
using the language all the
time, so you'll get really good
at it in a really short time.
You'll start by learning a few
phrases that you need all the
time, and add new words as
you go along as you need
them. Some of these will only
crop up from time to time, but
other words you'll need every
day, every time you need to
speak to anyone.
The same is true of learning a
computer language like AMOS.
Once you have a few phrases
(what we call keywords) down
pat, you'll be able to venture
forth on your own. After that
you need to know the syntax.
In a spoken language the
syntax is the grammar, or how
the words are put together to
get the right effect. In
computer languages like
AMOS, the commands or
keywords must be used in the
right order and context to
work properly, or to have the
right effect. Once you have a
vocabulary of AMOS keywords
and a knowledge of the right
syntax in which to use those
words, you can build on the
keywords you know and use
them with confidence,
learning by experience.

Mastering Amiga AMOS

But the most important thing to know about is that learning AMOS
should be fun. Enjoy yourself, because this isn't a test that you're
going to pass or fail. You're learning because you want to.

How AMOS Works
The whole point about AMOS is that it is an Extended BASIC. That is
to say if a normal BASIC was a 1964 Ford Cortina, a 1992 Porsche
would be an Extended BASIC. AMOS is just like a normal BASIC
except that it's been optimised in certain ways, tuned up to work
faster and do far more than any normal BASIC.
AMOS uses a few tricks to get the most power out of your Amiga.
Firstly sounds and graphics are stored in memory banks inside
your Amiga’s memory. These are special areas of memory which
AMOS allocates to store these things, and calls them up from
memory when needed. This is a lot faster than loading graphics or
sounds from disk, as you can imagine. The main reason for doing
this is speed. Once you've loaded a screen into memory, for
example, you can flip it up onto the screen in less than a second,
rather than about four seconds from disk. Sounds too are stored in
memory, like music and sound effects. They can be used on
demand without loading from disk. And the beauty of this system
is that the sounds and graphics you load into the memory banks
are saved invisibly to disk with your program code, so when you
load and run a program you're getting a darn sight more than just
the raw text that makes up the program. All the saved memory
banks load into memory as well, so the program has a lot of hidden
allies waiting in the wings, supplying more power.
Another trick that AMOS uses, is the very fast optimised commands.
Optimised means that the command has been written so as to be as
fast as it can be. No AMOS command is running at less than peak
efficiency. This means that even a simple program runs much faster
than a program in a normal BASIC. Secondly AMOS has another
simpler computer language which can be used inside AMOS
programs, and this is AMAL. AMAL stands for AMOS Animation
Language which is a special set of animation and movement
routines which are not only automatically compiled before running,
they also operate simultaneously on a number of AMAL channels.
This is multitasking at its best, and AMOS is the first true
multitasking BASIC for the Amiga. (Note for tech heads: it
multitasks AMAL, but you can't run AMOS as well as another
program in memory.)
Because AMAL can take over the animation and movement of items
on the screen, as in a game for example where the sprites must all
move at once, the rest of the AMOS commands can be saved for
slower processes in the program, like loading screens or files,
turning sounds on and off, that kind of thing.

Basic Principles

So there are memory banks, optimised commands and AMAL, but at
the centre of AMOS there's the editor and Direct Mode and these
two windows are where everything happens.

The Editor
When you first start the program you get presented with the editor
screen. Figure 2.1 shows you the initial state of the editor, with the
rows of buttons along the top of the screen. (The credits as
pictured here vanish when you press the mouse button.) The
program has disabled the Amiga’s normal windowing system,
Intuition, or at least the Workbench side of it, and so there are no
Amiga back and front gadgets on the window, neither are there any
menus along the title bar. (There's no title bar in fact!) What you
have instead is a pair of rows of buttons along the top of the
screen.

iill -I|_I

--'- 1-- :-'-;-:-.-.'-:-r-r-'-'-'-;-;_- - -'- -:-:- -_.-'.- -.-'-;-.-.-:---.-:1.;'-'.-_.-:-;-:-.-.-:1:;.1.-.-:-;-.-.-u-':-;-;;.- ;.-.-
"I'iEII-ll-:IT:.':'i'I'i:II'III'I'IPTP':TI'II"' .'I ' ' ' IT1."I*"'-'III'I-‘IF 'I'III'I PIP.'.' '1I'I"""PIP-I '=.I'.PI"I""' -'-'LI" I": '5'" ' I] H

Figure 2.1. AMOS Editor startup screen.

Press the right button and the titles of these buttons change, to the
rows in Figure 2.2. These are your basic AMOS editor commands.

[ill fllll llll I[Ill46 C111?-799856 Fist-1668752 E

Figure 2. 2. Alternate editor menu.

Mastering Amiga AMOS

AMOS Editor Commands
The commands are activated by a clever bit of button twiddling.
Click on one of the buttons and the command is activated. Press
and hold the right button, and click on a button, and the new
command (revealed by pressing the right button) will be activated.
For example, clicking on the button on the top left will run a
program, but holding down the right button and clicking on the
same button will load a program. You can also use the Shift key on
your keyboard to get the other menu up instead of using the right
button. Here's what all the commands do, starting from top left and
ending at bottom right:

Obviously this runs the current program. You can also press F1 to
achieve the same result. The program is first tested for any syntax
errors and then it is run, until an error occurs that is. If you get an
error of any kind (see Appendix B for more details) then the
program will stop with an error message at the bottom of the
screen, giving you a fair idea of what went wrong and where.

Test
This command tests the program without running it. If you have
written any obvious syntax errors into your program, these can be
weeded out here. These will generally include any unintentional
mistakes like using an AMOS keyword as a variable name, like
A$=Load. If your variable is correctly named, it will always appear
in capitals, but if you've used a keyword by mistake, it will start
with a capital letter and the rest of the word will be lower case.

lndent
Indents all the lines (like the lines within a loop) which are better
off indented in the program to show the program structure. This
just neatens up your program and makes it easier to read, rather
than affecting its function.

Blocks Menu
This takes you into the Blocks menu, replacing all the main menu
command buttons with new commands for marking, cutting and
pasting sections of your programs.

Search Menu
This takes you to the Search menu, where you can apply
search/replace type commands to your program.

Basic Principles
 |

Run Other
This runs an accessory program, or another AMOS program in
memory. You can run as many AMOS programs as you have room
for in memory.

Overwrite
Hit this to change the text editing mode from Insert to Overwrite.
Insert means that all letters already on the screen will move to
accommodate any you type at the start. In overwrite the letters will
write over those already on the screen.

Fold/Unfold
Procedures can be folded to take up less space and show the true
structure of your program.

Line Insert
This inserts an extra blank line in your program if there's
something you forgot to put in.

System Menu
Now when you press the right mouse button (or Shift key) you are
looking at another menu, called the System Menu. Here is what you
can see on this menu;

Load
This brings up a requester for the loading of programs into memory
ready for running.

Save
This brings up the same requester for saving your freshly written
program from memory onto disk for safe-keeping.

Save As
If you already have the program on disk but want to save it as a
different name, you can do so like this.

Merge
This adds a program on disk into the current listing on screen at
the point you have placed the cursor. This is brilliant for bolting
together separate PROCs or even sections of other programs, to
make a whole functioning program.

Merge ASCII
This is the way you can load ASCII files, usually programs from
other forms of BASIC, for conversion to AMOS. If you've obtained an
AMOS program from a bulletin board, or a listing from a magazine,

Mastering Amiga AMOS

you can load it in this way. This even means you can use another
sort of editor to create your program (if the AMOS editor isn't to
your taste) and then load it into AMOS later as ASCII text!

Ac.New/Load
This clears the space reserved for Accessory programs and loads a
new one from the disk. It does this automatically, taking the first
program it finds with the .acc extension.

Load Others
This enables you to load a specific accessory program from disk,
selecting it from the usual requester.

New Others
This enables you to erase one or all of the acc programs you have
loaded from memory.

New
This blanks the memory of all AMOS code, meaning you can load in
a fresh program. This command also clears any memory banks you
have operating, so be sure you either save them out as .abk files or
save the main AMOS program and these with them.

Quit
This stops AMOS and sends you back to the Workbench.

Blocks Menu
Some of the buttons on the initial menu page will take you to
another set of buttons which do other things. Like the Blocks Menu
where you can mark blocks of code for cutting and pasting:

Block Start
This marks the beginning of the block. (You can also mark blocks
using the right mouse button.)

Block End
This similarly marks the end of the block. (Don't forget the right
mouse button can be used instead! Nah, nobody's memory is that
short)

Block Cut
Once you've marked a block you can cut it out using this command.

Block Paste
Once you've cut a block it sits there in the buffer until you want to
paste the code in the block somewhere else in the program. You
may not want to, but you can if you like.

Basic Principles
 |

Block Move
This moves the marked block to the location of the cursor. So you'd
mark a block, move the cursor to where you want the code in the
marked block to move to, and then hit Block Move.

Block Store
This is what you'd call Copy in any other program. The block you've
marked is copied into memory and can be pasted in the current
program (or one of the other AMOS programs in memory) using the
Paste Block command.

Block Hide
This clears the block marks, in case you've highlighted the wrong
bit and want to start again.

Block Save
This saves off the marked section of code onto disk, so you can
borrow bits of code from other programs and assemble them all on
disk. Later you can use Merge to bring them all together as one
program.

Save ASCII
This is the way you generate ASCII code from your AMOS programs,
should you want to that is. AMOS code is not readable by anything
else but AMOS, but if you wanted to save off an AMOS program for
printing out or loading into a DTP program (like I have in this book
for example), you would highlight the code you want to save, and
save it as text using this command.

Block Print
This prints the currently selected block out to your printer, if you
have one! There is one keyboard command which you won't find on
a button and that's Select All. This selects the whole program for
saving as ASCII text or for printing, and you do this by holding Ctrl-
A. Obviously if you Select All by pressing Ctrl-A and then print, you
can print out everything rather than just a small section.

Search Menu
Then finally we have the Search Menu, where all the search/replace
commands are:

Find
This searches from the cursor position down your file for a certain
word, which is handy if you write big programs and can't remember
where you've left something.

Mastering Amiga AMOS

Find Next
This repeats the Find command using the same word you typed in
before using Find.

Find Top
Exactly the same as Find, but this time it starts from the top of your
file.

Replace
This works in concert with Find to replace the found word with the
correct word, of your choosing. You are asked if you want to
replace the word or not.

Replace All
Same as Replace, except it just changes all occurrences without
your consent. Use this with caution.

Low<>Up
This button changes the case sensitivity of your word search. Leave
it like it is and it will treat upper case letters like A differently from
lower case ones like a. If you click on this it toggles to say Low=Up,
which means that all cases are treated equal.

Open All
If you have folded all the PROCedures in your program, this will
open them all up again. Handy if you want to print out the whole
program and want to make sure you don't get any stray closed
PROCs.

Close All
Same as above but this time all the PROCs in your program are
closed all at once, making the listings shorter and more
manageable, and also saving on memory.

Set Text B.
Stands for SET TEXT BUFFER, and this means the amount of room
you have in the editor for your programs. This is preset for you in
the config program, and this is handy if you need to expand the
amount of space you need for any reason.

Set Tab
This simply allows you to set the amount of spaces the Tab key will
move the cursor. Rather than tab all over the place to make your
listings interesting, why not use the Indent button?

Menu
General

System Menu

Blocks Menu

Option
Run
Test
Indent
Blocks Menu
Search Menu
Run Other
Edit Other
Overwirite
Fold/Unfold
Line Insert

Load
Save
Save As
Merge
Merge ASCII
Ac.New/Load
Load Others
New Others
New
Quit

Block Start
Block End
Block Cut
Block Paste
Block Move

Basic Principles
 |

Make an effort to learn all the keyboard short-cuts for the various
menu items. To help you Table 2.1 contains a list of all the
keyboard short cuts in AMOS.

Hotlcey
F1
F2
F3
F4 (or Ctrl key)
F5 (or Alt key)
F6
PT
F8
F9
F10 (or Ctrl-I)

Shift-F1
Shift-F2
Shift-F3
Shift-F4
Shift-F5
Shift-F6
ShJ'fi—FY
Shift-F8
Shift-F9
Shjfl~F10

curs (or cm-r1)
Ctrl-E (or cm-re)
curc (or Ctrl-F2)
Ctr1—P (or ctnrt)
curm (or Ctrl-F3)

Table 2.1. AMOS Editor keyboard short-cuts.

Mastering Amiga AMOS

Menu
Blocks Menu

Search Menu

I

Option
Block Store
Block Hide
Block Save
Save ASCII
Block Print
To select all

Find
Find Next
Find Top
Replace
Replace All

Hot key
Ctrl—S (or CTIPFB)
Ctrl-H (or Ctrl-F4)
Ctrl-F9
Clrl-F5
Ctr1~F10
Ctr‘:-A

curt" (or Alt-F1)
Ctrl-N (or Altrz)
Alt—F3
Ctrl-R (or Alt-F4)
A1-P5

L0w<>Up Alt»-F6
Open All A'.t-FY
Close All Alt-P8
Set Text B Alt-F9
Set Tab Ctrl-Tab (or Alt-F10)

Table 2.1 (continued). AMOS Editor keyboard short-cuts.

Using the Mouse
The mouse is used in the AMOS Editor for a number of tasks, much
like in a word processor. Use of the right mouse button in the
editor, for example.
When I first used AMOS I had a problem with the file requester. I
couldn't initially figure out how to look at another disk drive (or
assigned path or device) without waiting till the computer had read
the disk and then laboriously typing the name in by hand. But using
the right mouse button makes it a lot simpler.
If you click the right mouse button in an AMOS requester, you get a
list of current devices, drives, RAM: etc. just click on the one you
want and bob is very much your uncle. Simple really, but I never
saw this in the manual. I just don't read the things, a by product of
being a computer writer and not believing that a manual could tell
me anything useful. What a cynic! I really should read manuals
more you know because, unlike so many others, the AMOS manual
is very good, and although it may take a while and a bit of delving
to find what you're looking for, the information is in there
somewhere if you look for it.

Basic Principles

Anyway in order to bring up the drive and device selections you
must press the right button. Then once you've selected your disk
and directory, simply click on the SetDir button, and this directory
will pop up every time. It's so simple even Ralph my pet mouse
could do it. Okay, so his paws are a bit too small to move the Amiga
mouse, but I was only joking and you get the gist.
The second way of using the right button is for selecting text in the
program, as I've said just a short while ago in the bit about Blocks.
In a normal word processor or text editor, you can use the left
mouse button to stroke a highlight around the text you want to
mark, and cut, paste and copy it around the current and other
documents. In AMOS the right button performs this function. Try it.
Load a program, then put the pointer on the first character of the
listing. Press the right button and move the mouse down. Brilliant
eh? Now you can cut and paste this section, even save it off as
ASCII text using the Block Menu's ASCII Save option.

Direct Mode
As well as the main editor, there is a separate screen for direct
mode. In a normal BASIC editor with line numbers, any line which is
not started with a line number is deemed not part of the program,
and so is executed immediately. All manner of things can be done
like this, from testing outlines you're not sure will work, to loading
and saving programs.
In AMOS these direct mode commands are tapped into a sort of
modified Command Line Interface. You can list the contents of
disks, load screens, and even load and save .abk files into memory
banks. ABK Files are a special memory bank format used by AMOS,
and if you have a file ending with .abk, then it's an AMOS memory
bank. To load them in in direct mode you simply say:

Load “whatever it is.abk"

and the file will hop into AMOS in the correct memory bank for
whatever the information is. It finds its own way you don't have to
tell it where to go!
A memory bank is where AMOS stores all its sprite, screen and
sound information. You can even use a memory bank as a
temporary workspace to store information until you need it.
There are 15 memory banks, and they're laid out as in Table 2.2.

Mastering Amiga AMOS

Memory Bank Contents

<.OCIJ"--JO'JCJ'.I>-I5-0JE\)I—-'

Sprites
Icons
Music
Amal
* data
* data
*dma
* data
* data

10 * data |
11 * data
12 * data
13 * data
14 * data
15 * data

Table 2.2. AMOS's I 5 memory banks.

The first four banks always have those sorts of data in them,
number 1 always being for moving screen objects or sprites;
number 2 always being for blocks of graphic data for background,
or what they call icons in AMOS; number 3 is always music (.abk
versions of tracker files); and finally number 4 is always reserved
for AMAL files. All the other banks can be used for samples,
compressed screens, and any other type of data you want to store
in your AMOS program. When you save the AMOS file, then all these
banks of data are saved with it. You can of course also save the
banks on their own as .abk files, if you want to use the same files
for other programs. You can also steal other people's .abk files this
way!

Compressing Graphics
You may wonder why a lot of the graphics you see in AMOS
programs aren't accessible from disk. Sometimes you will run an
AMOS program and you'll get a screen of graphics which you can't
find as a file on the disk. The reason is that these graphics are
compressed or packed into a memory bank, taking up less room
and being accessible instantly rather than loading from disk.
To compress screens you use the Spack (or Screen Pack) command,
and what it does is compress IFF screens (or portions of screens)
into banks of memory. Once in a bank of memory, the screens are
saved with the program and can be unpacked onto the screen with

Basic Principles

the Unpack command. Here is an excellent example of how to
Unpack a series of packed screens (quick fanfare for your first
AMOS program):

Close Editor
Hide On
Music 1
A=4

Repeat
Unpack A To 0
If A=4 Then Wait 400
If A>4 and A<13 Then Wait 250
If A=13 Then Wait 300
Fade 3
Wait 30
Inc A
If A=14 Then A=4

Until Mouse Key=1
End

To get the screens into a memory bank you need to write a small
AMOS program to pack the screens into a bank, like so:

F$=Fse1$(“*","","Load a picture“)
Load Iff F$,0
Spack 0 To 1
Print "The length of your new bank is ";Length(1);"
bytes"
Wait Key
Screen Close 0
Unpack 1 To 0

Now if you go to direct mode and type Listbank you will get a
listing of the current graphics bank. Don't worry about what all this
means for the time being, just type it in and save it. Notice how
AMOS knows that keywords should have a capital letter at the
beginning and be lower case otherwise, and that all variables are
changed to upper case, no matter how you type them in?

Mastering Amiga AMOS

Why should you use Spack and Unpack? Well, one of the most
memory intensive bits of code you can include in your programs is
a graphics screen, and although you can read and write IFF style
graphics, you can fit more in if you use compressed AMOS graphics.
That way you can approach the kind of graphics quality in
commercially produced software, as the only way they can fit a
huge game and graphics into memory is to crunch the graphics
down a lot.
Chapter 18 has more details about Spack, and information on ways
of saving and loading sections of a screen or even a brush. Brushes
load into the screen at the top left corner so to save a brush all you
have to do is set the Spack command to compact only the top left
square of the screen. Then once you've unpacked the graphic you
can plonk it anywhere on the screen. This could be a series of
mouth portions of someone's face, where rather than redrawing the
whole head each time the character's mouth moves. You can just
unpack a new mouth and stamp it over the bottom of the head.

The Config Program
The Config.AMOS program allows you to alter the configuration of
your AMOS system, although you don't have to do anything of the
sort to run your program. I've never really configured my system,
although you have to use this program to add extensions to your
system. The one time I did make cosmetic changes to the system I
immediately reverted to the old system becuase the colours I made
were too bright and horrible. So don't mess with the configuration
unless you have to.
If you do have to, you must load and run the CONFIG.AMOS
program on your disk. This tells you what extensions (like TOME
and Compiler) you have loaded and generally sets the system up.
This is better described in the chapters concerning each extension,
but for now I'll just say that to run the config program, load it into
AMOS and click on run. You'll be prompted as to what you have to
do. You can also set the system colours and various other presets.
You don't need any instruction to use the program. Basically if you
don't know what a certain button does, don't touch it.

AMOS Compiler and AMOS 3-D
We'll go into these in more detail in Chapter 19 and 20, but for now
let me tell you about how these extensions work. An extension in
AMOS is a bit of code which is attached to the program to drive
certain new functions and commands. The compiler adds the ability
to compile an AMOS.program in machine code. The resultant
program can be run like any other Amiga program, via the Shell or
the Workbench. Compiled programs will run on their own without

Basic Principles

any further interference from AMOS, so your AMOS program can be
thought of as the source code (the original uncompiled code) for
the finished program. Anyone using your compiled AMOS program
will know you used AMOS, it won't look shabby like some BASIC
programs, and it'll run fast and sweet time after time.
AMOS 3D is a different Morphy Richards of Pilchards altogether.
Once this extension is installed you can animate 3D objects in your
AMOS programs. The objects are created in a special Object
Modeller (called OM for short) and then the objects are loaded into
an AMOS program for use. The objects can be moved around over
IFF pictures, along with sprites and other types of graphics in
pretty much the same way as any other AMOS graphics and screen
objects.
Using compiler and 3D you can create literally any kind of program
you desire, from a utility to a 3D game simply, quickly and
professionally.

TOME
This is the Total AMOS Map Editor. It's designed for the creation of
large maps for games, where the backgrounds have to be made far
larger than the normal Amiga screen. TOME not only edits the
maps, but supplies you with the commands you need to move them
around within your AMOS programs. Like 3D, all programs with
TOME in them can be compiled. AMOS TOME series 4 also contains
some new animated background features, which means your maps
can be so exciting you have to go to the toilet every time you play
the games. AMOS TOME (along with other great AMOS programs and
extensions) is available from Shadow Software, 1 Lower Moor,
Whiddon Valley, Barnstaple, North Devon, EX32 8NW, £29.99
(£24.99 to members of the AMOS club). Registered users of TOME
Series 3 can upgrade for £10.

So That's AMOS
This is how AMOS works and what you need to know in order to get
the best out of it. All that remains for me now is to cover all the
fine detail, the bits in between the facts, so you can do some of
your own AMOSing. Turn the page and let's get started.

Mastering Amiga AMOS

er
3:
Program
Structures

So now you know how to use
the editor, the thing you will
want to do is start
programming, but hold on to
your need for gratification for
a minute. Before you start
programming you must figure
out what it is you want from
your program. Okay so what
you really want to do is mess
about with AMOS and find out
what it can do. That's fine, go
right ahead. Run through the
chapter on AMOS commands
and what they do, and see
what happens. You can test
out any command you like to
see what it really does, but
some commands don't work
without a little bit of
preparation. For example, you
can't load a picture unless
you've got a picture on disk
ready to load! You may want
to load and run some music,
but youdl have to have
prepared some music to load,
and so on and so forth.
Once you've toshed about with
AMOS and got it all out of
your system, you'll finally
come back to this book and
want to know how to do it all
properly.

Dem Bones, Dem Bones
The way your program is laid
out on the screen, what goes
where, is called the structure
of your program. AMOS
programs have a similar
structure to other types of
BASIC, and the worst thing
about trying to explain the
best way to lay out a program
is that there is no real best
way.

Mastering Amiga AMOS

You can write the program in one big lump, with lines of code
calling other lines of code back and forth, and this is what I would
call the linear approach. The other major way of doing it is by using
subprograms and procedures (Procs), where you have a main
program and this drives all the other parts of the program, which
can be added and subtracted without harming the structure too
much. This is what I'd call a more modular approach, and it is this
way that I think is the best. In fact as you work your way through
this book you'll come across routines that can be included in your
programs, and if you follow the modular approach these will be a
lot easier to insert into your own programs.

Proc and Roll
Procedures are at the very heart of what makes AMOS so powerful
as a development programming language. In fact all well structured
versions of the BASIC language have a Procedure system of some
kind, and in this case AMOS is not exceptional. But if you've come
from a lesser BASIC to AMOS, you might not really know what
you're missing if you don't use them.
Using Procs is easy. Imagine a Proc as a command you've added to
AMOS which does something you would like a programming
command to do. If every function a program does is a Proc, you can
write each segment of the program separately and test them one at
a time, then finally combine everything into one big program.
Instead of debugging the whole program you are ironing out any
glitches along the way, and so you don't run into problems later on.
So before you can use a Proc, first you have to define it, and this
can be done anywhere in the program, using the:

Procedure <name>

command. This could be placed at the beginning or the end of the
program code, but it doesn't matter as AMOS can find a Proc
definition as long as it's there. If it's not there AMOS will tell you so.
After the Proc is defined, it can be called, and you do this either
with:

PPOC '<l'l3.lll9>

or just the name of the Proc. So as I said before the new Proc is
almost like a new AMOS command that you've written yourself, and
once defined you can use the Proc any time you like in the program
just like any other AMOS command, simply by typing in a line of
code.

Program Structures

To demonstrate this principle take this very short demo program:
Proc OYEZ

Procedure OYEZ '
Print "Phil South! And why not?“

End Proc

The procedure in this case is a simple routine to print the “Phil
South! And why Not?" string in the Print command. Every time you
use Proc’s title, in this case OYEZ, in the program, you get the same
result as if you’d typed the Print line inside the Proc. Most of the
time you’ll use the name of the Proc without typing the Proc part of
the call, like so:

OYEZ

Procedure OYEZ
Print "Phil South! And why not?“ |

End Proc

Of course the routine inside the Proc definition can be more than .
just a single command, even a whole little program to itself if you -
like, and this is the big idea. ln a program you have a Proc for each
bit of the program which you then call from a main loop. For
example you could have a program like this:

MAIN:

CHECK_COLISION
movtr
snot

Goto MAIN

Procedure CHECK_COLISION
Procedure MOVIT
Procedure SHOT

Mastering Amiga AMOS

which is an idea for a simple game program. As long as the Proc
defs are in the program somewhere, the Procs will work. They don’t
have to be in the actual flow of the program, inside a loop or
something. These are like DATA statements, which can be read
anywhere in the program by the READ command.
Looking at the Procs in the last example you may think l’ve
forgotten to include anything inside the Proc defs, but this is not
the case. The Procs have been folded. You see the real groovy thing
about Procs is you can fold them up into one single line to make
your listings more readable. (Folding is done using the Fold/Unfold
command in the AMOS command menu.) When you activate this
command it toggles the folding on and off for the procedure at the
point you‘ve inserted your cursor. Toggling means you press it
once and it folds the Proc, press again and it unfolds it. When
you’ve folded the Proc, there is only a single line left, this is how
our simple example would look:

OYEZ

Procedure OYEZ

It works just the same as it did, but the trick is that you just don’t
have to look at all the annoying details.
Even better, there is a special Proc locking program called
Lock.AMOS on your AMOS disk, which locks the Procs in your
program meaning that anyone else who gets hold of the disk cannot
unfold your Procs and examine the code. Nice if you spend a lot of
time coming up with neatly coded Procs which you use in all your
own programs, and it means that prying eyes cannot steal your
code. Of course you can also compile the program to keep out code
stealers, but we'll get to that later on. But let's not be too paranoid.
If you think you’re such a good coder, how is anyone going to copy
your style? Be better, not just good.
Once you’ve finished a Proc you can even save it off on its own like
a separate program, like so:

SCREENSAVEPROC.AMOS

for a Proc called (for the sake of argument) ScreenSave, for instance.
You don’t have to save Procs with the same name as the Proc, but it
helps to identify them on thedisk if you do.
So your routines for all the day to day business in your programs
like opening screens, loading .abk files and all that other mundane
stuff, can all be saved off to disk as folded and locked Procs. All
you do to build a program from these disconnected modules is to
Merge them with the current program.

Program Structures

So every time you write a program, you start by creating a different
module for each stage of the program, and then just bolt them
together. It’s a nice way to work as the job is neatly broken down
into manageable bits, and also you may have some very nice
routines you can reuse, just by reloading them!

What’s Up, Procs?
Procedures are one of the most important things to get to grips
with in AMOS, apart from AMAL that is. So it’s important you use
them properly. Remember to declare variables you want to share
with the rest of the program, or they will be local. Like so:

SNOUT=10 : SNO0T=15 : SNOUT$="Phi1“

Procedure SNOUTY
Shared SNOUT, SNOOT, SNOUT$
Print snout, SNOOT, SNOUT$

End Proc

If you forget to do this you’ll get an error.
When you develop a program you often use a different disk from
the final disk, and then have to alter the program to run from df0:
If the program can’t find any of the .abk files it needs, the program
won’t work and it sometimes takes ages to weed out all the problem
lines. To prevent this, always get into the habit of working from a
disk with the same name as the finished program disk, and put a:

Dir$="GameDiskName:“

at the start of each program. This automatically CD5 to the disk in
question and means that all disk calls will go to this disk.

Going Loopy
AMOS has a number of looping structures which enable you to do
repetitive tasks (all programs involve repetitive tasks!) either over
and over until the end of time, or over and over until certain
conditions are satisfied. The looping structures l’m talking about
are While Wend, Repeat Until, and Do Loop
The first two are superficially similar, but the difference between
While Wend and Repeat Until is that While Wend repeats a section
of code while a condition is true. For example:

X=0

While X<1O

Mastering Amiga AMOS

Inc X

Print X
Wend
Print "finished"

so while x is less than 10, the program runs. When the number x
reaches 10 or over, then the loop is terminated and the next line of
code is run, in this case finished is printed to the screen.
Repeat Until is the exact reverse of this, as this function waits until
the condition is true before it stops, like so:

X=0
Repeat

Inc X

Print X
Until X>10

So until x is greater than 10 the thing keeps going round.
There are other ways of getting loops, and some are unconditional,
which means they don’t test anything but they just keep going
round and round until the cows come home. Do Loop is one of
these, like a sort of close loop form of Goto. Do Loop is used if you
want a part of the program to go around and around forever. If you
want to leave a Do Loop, apart from using Control C to break out of
the program, you can insert an Exit command, like so:

X=0

Do
Inc X

Print X
If Mouse Key=1 Then Exit

Loop

This pops out of the loop if you hold down a mouse button. l prefer
the more elegant loops myself, as Do Loop is a bit crude, but it has
its uses.
Exit can also be made to test something itself, if you use Exit If. To
test a condition of a variable using Exit If you do it like this:

X=O

D0

Program Structures

Inc X
Print X
Exit If X>-10

Loop
Obviously these are very simple examples, and most of your
control statements will be more complex than this, but it gives you
an idea of the reasons why you would and wouldn’t use a certain
statenient.

Various Variables
Some types of variable come into their own when you start using
Procs. The main things you’ll encounter are local and global
variables.
The main difference is that a local variable (variables in Procs are
local by default) is independent of the rest of the program, and only
comes into force when the program is running inside the Proc itself.
So inside the Proc A might be equal to 10, but outside the Proc it
equals nothing, nada, zilch. Plain zero.
A global variable can be set however, andthis means that the
variable is equal to whatever it is set to all through the program,
inside a Proc and outside.
So a local variable is the default for variables in AMOS, where a
variable inside a Proc is independent from the rest of the program.
Like this example:

X=20 : Y=50

TRYIT

Print x,Y
Procedure TRYIT

Print X,Y
End Proc

So not only can variables used inside the Procs be different from
ones used outside the Procs but you can't carry over any variables
into a Proc unless you make them global. So for example if you
define arrays with DIM, you must watch out if you’re going to use
them in a Proc, especially if that Proc has been imported from some
other program. Make a habit of defining such things as global
variables if you think you may need to use them in Procs later.

Mastering Amiga AMOS

If you want to turn a list of variables into global variables then you
use the Global keyword to define the list. Like so:

X=20 : Y=50

Global X,Y
TRYIT

Print x,Y
Procedure TRYIT

Print X,Y
End Proc

Global variables can be accessed from anywhere inside the
program, even inside Procs.
If you want to access a list of variables global from inside a Proc,
you must define them with Shared. Like so:

X=20 : Y=50

TRYIT

Print x,Y
Procedure TRYIT

Shared X,Y
Print x,Y

End Proc

The Proc can now tap into the variables X and Y, and read and write
to them, whereas other Procs cannot.

Are You Def?
Another neat Proc trick is the use of parameter definitions. This is a
kind of reverse trick, where you pass a specific list of variables
complete with their contents to a Proc as you define it, like this:

Procedure NIT[A$,X,Y]
The variables are loaded directly from the main part of the
program, and the Proc can be called in two ways. Either you pass
another variable to the Proc which has a value you wish to pass to
the new variables in the Proc. Like this:

N$=“Phi1" = A=45 = s=s
NIT[N$,A,B]

Program Structures

Or you can add the precise values you want to fill these variables:

NIT["Phi1“,45,3]
This is one of the best ways to pass values from a main chunk of
code directly to a Proc.

Daddy Pop
Just before we leave Procs for the moment, a quick word about Pop
Proc is in order. The only way you can exit a Proc without going all
the way through it to End Proc is by employing the Pop Proc
command. You’d use it as a part of a conditional branch command
like this:

PITIT

Print "Proc Popped"

Procedure PITIT
Input A$
If A$="yes" Then Pop Proc
Print "The Proc NOT Popped!“
End

End Proc

This program shows you how to Pop out of a Proc without going to
the end. The end of the Proc here is the end of the program. if you
type yes into the prompt, you pop out of the Proc and you get the
line Proc Popped printed to the screen. If you type no (or indeed
anything except yes, because this is fa very crude program) then you
drop through the conditional branch and hit the line which prints
up Proc NOT Poppedl, with that little exclamation mark just for
emphasis.

Cooking with AMAL
Another important part of program structure is AMAL. The thing of
it is, that games programmed in AMOS using AMAL are better than
those that don’t use it. The trade off here is that AMAL programs
are harder to get going, so for beginners l’d leave out the AMAL
until you’ve got a full grasp of AMOS first.

Mastering Amiga AMOS

But once you do use AMAL there are two ways to put it in your
programs. The first and most frequently used method is to insert
an AMAL program into the AMOS program, a line at a time like this
example:

A$="1ine of AMAL“
A$=A$+"another line of AMAL"

Each line of the code adds the current line to the variable A$, and
then executes it as if it were one line. Another way of utilising
AMAL is to use the AMAL Editor program, which enables you to
write your AMAL programs as a number of channels and save them
in a block as a .abk file. After you’ve saved this to disk you can
reload it to an AMOS memory bank and access it invisibly from
within an AMOS program. The AMAL_ commands are saved with the
program and so they are invisible to the casual user, and faster
because they are accessed from memory rather than being loaded
inside a program or from disk.
This is all l’ll say about AMAL for the time being. If you want to
know more you can find out all about AMAL in Chapters 12 and 13.

Music and Graphics
The thing which separates AMOS from all other BASIC interpreters
is the ability to play music and sound effects from a bank rather
than having to load a module of music and play it from disk. The
music can be created in any number of tracker programs like
Soundtracker, Noisetracker, MED, Game Music Creator or something
like that, and then either converted into an .abk file and read into a
memory bank or played in some other clever way, using a stream of
new utilities which are coming out almost daily.
Once a music module is in a memory bank it can be played at any
time in the program by typing in:

Music 1

which plays the first tune stored in the Music memory bank (bank 3
always). To stop the music you just add:

Music Off

to your program and the tune stops. This is a much more modern
way of treating music (and the same goes for graphics) in a
programming language, as a separate thing from the code which it
drives.

Program Structures
 ,

Tracker modules can be loaded and played using:
Track Load "mod.<fi1ename>",3
Track Play

which loads the tracker module into bank 3 and then plays it. If you
want the track to play more than once, you can add:

Track Loop On
which plays the track over and over until you type Track Stop in
Direct Mode or from the program.
The same goes for Graphics. Any IFF screens in your game can be
loaded and saved using banks rather than loading or saving the
files from disk. The files are always in memory in a specially
compressed format, until required, at which time they uncompress
and play or show on screen (whichever is appropriate).
Saving and loading banks can be done within a program at the start,
or to save time they can be loaded in direct mode and saved with
the program for instant access when the program is loaded again.

More Variable than Not
And finally you’ll need to know about the various types of variable.
We‘ve looked at shared and locals, but individual types, no. There
are a number of different types of variable and these fall into two
ready categories, alphanumeric and numeric. Alphanumeric are
always given a $ sign to denote the fact that they contain words or
letters, strings as they are called in the trade. Ordinary numeric
variables are simply letters or numbers. So:

A$="Bob's Bottom"

is a alphanumeric variable, and:

Z=3

is numeric. The variable names can be more meaningful, but be
careful you don’t give a variable name which is also a reserved
command name in AMOS, like ADD, COLOUR or MENU. AMOS is
fairly clever about this sort of thing, and will tell you that you've
made a mistake. The best way around this is to say the word and
write it down phonetically, like MUSIK instead of Music or FWEE for
Free. This come naturally after a while.
Other types of variable are to denote different kinds of variables
within those groups. Integers are variables with nothing attached,
like Z in the example I gave a second ago. Integers are whole
numbers without any fractions, like 3 or 4, but not 3.142. Anything

Mastering Amiga AMOS

with a decimal point in it is a floating point number and you call
these real numbers. Integer maths works faster than floating point,
but floating point is more accurate. To denote that a variable is a
floating point number, you must append it with a hash symbol, or
#. Like so:

P#=3.1245

NUMBER#=45.62

This is a type of notation used with few other BASICS, so it’s worth
bearing this in mind if you intend typing in programs written in
another sort of BASIC.
The only other types of notation you have to know are for binary
and hexadecimal numbers, which are not variables as such but they
are used when assigning numbers (constants) to variables. These
types of numbers are written thus:

Binary %11111111
Hex $FF

Decimal 255

to distinguish them from normal types of numbers.
That’s pretty much all you need to know to get you going. Now we
begin the tortuous journey through AMOS, hoping to visit all its
important little places along the way.

g
er
4:
Graphics

Using AMOS you can combine
IFF graphics created with a
drawing package to produce
dazzling on-screen displays,
but there is another side to
AMOS, the ability to produce
graphics by programming
rather than drawing. We’ll get
onto Sprites and Bobs and
Screens soon enough. For now
let us content ourselves with
looking at the drawing
routines in AMOS, plus some
very neat rainbow effects you
can get using a few tricks of
the graphics coprocessor, or
Copper as it is called.

Painting with Maths
Using a graphics package on
the Amiga is a very easy thing
to do, as you know. You
simply boot it up and draw
using the mouse. This is a
very convenient way of
producing the kind of
graphics you see in most
game programs, but what
about another kind of
computer graphics, where the
emphasis is on the computer
part of the phrase. Graphics
that are drawn by the
computer are born of the time
when the only kind of
computer graphics you could
get were characters on a sheet
of paper roHing out of a
teletype terminal. You could
imitate what you wanted to
depict using letters, and many
games were just a letter H
chasing an asterisk across the
screen. (And a lot of fun it was
too, I might add. At the time,
at least.)

Mastering Amiga AMOS

Then plotters came about, and you could not only type a page of
text on your regular printer, you could output flowing drawings
onto paper using various different coloured pens. The lines the
computer drew on the paper were smooth and curved, and these
lines were said to be plotted rather than bashed out line by line like
you would on a normal printer.

With the advent of computer terminals with video monitors, the
plotted graphics were drawn to the screen, but the word plotting
had stuck, and so the pixels on the screen took the place of the
pens on the paper, and computer graphics as we know it was born.
Things have moved on since then and graphics means something
different to what it did ten years ago, but you can still get some
very useful effects out of your screen by drawing rather than
painting.

Drawing on the Screen
Why would you want to draw on the screen using AMOS rather than
a mouse and a paint program? Well for embellishment of your
excellent AMOS programs, that’s why. Like this sort of thing:

Rem ** Snoutbox1.AMOS **
Rem
Ours Off : Flash Off : Cls O
Paper 0
Box 0,0 To 319,100
Box 2,2 To 317,98
Locate ,4 : Centre "Title Box for AMOS programs"
Locate ,6 : Centre "by Phil South"

Locate ,12 : Centre “ Snoutware (c)1992 "

This is a nice quick and easy way of creating a title for your
programs. It draws a couple of boxes, with a 2 pixel gap between
them, and it then positions a few lines of text, with the last line
overlapping the box at the bottom. You can simply type your
program name and your name into the Centre print strings, and
Robert is your uncle. I put a space on either end of the Snoutware
line, just to crop a bit of the box off at each end.
You can go further still with this kind of thing, like how about this:

Rem ** Snoutbox2.AMOS **
Rem
Curs Off : Flash Off : Cls O

Graphics
_

Paper 6
Ink 2 : Bar 0,0 T0 319,100
Ink 6 : Bar 2,2 To 317,98
Locate ,4 : Centre "Title Box for AMOS programs“ '
Locate ,6 : Centre "by Phil South"
Locate ,1O : Pen O : Centre " Snoutware (c)1992 "

This time instead of using the box we've used a bar, with one bar
being smaller than the other to make a nice border. If you wanted
to get really flash, you could make it 3D like so:

Rem ** Sn0utb0x3.AMOS **
Rem
Curs Off : Flash Off : Cls O
Paper 7
Ink 2 = Bar 0,0 To 319,100
Ink 8 : Bar 2,2 To 319,100
Ink 7 : Bar 2,2 T0 317,98
Locate ,4 : Centre "Title Box for AMOS programs"
Locate ,6 : Centre "by Phil South“
Locate ,1O : Pen O : Centre " Snoutware (c)1992 "

You just make one bar form the highlight on the top and left, and
another bar for the shadow bottom and right. Draw one bar from
0,0 to 319,100, then the next one over that from 2,2 down to
319,100. Finally the last one in a medium shade over both the
others leaving a two pixel gap all around the outside to show the
highlights and shadows. Simple has reliefeffect, but it's never done
Workbench 2.0 any harm! We'll come back to this effect in a minute.

I ' ‘I

Figure 4.1. $noutbox3.AMOS in action.

Mastering Amiga AMOS

You can also sprinkle patterns about, for example in another visit
to my introduction bar we can do this:

Rem ** Snoutbox4.AMOS **
Rem
Curs Off : Flash Off : Cls 0

Paper 7
Ink 2 : Bar 0,0 To 319,100
Ink 8 : Bar 2,2 To 319,100
Set Pattern 5 = Ink 3,7 : Bar 2,2 To 311,93
Locate ,4 : Centre “Title Box for AMOS programs"
Locate ,6 : Centre "by Phil South“

Locate ,10 : Pen O : centre " Snoutware (c)1992 "

and this is the most sophisticated version yet. In order to get the
patterns, you must have the MOUSE.ABl< file loaded into a bank, as
this contains all the patterns. You'll find it in your AMOS_SYSTEM
drawer on the AMOS disk. Notice how l set the ink and paper
colours to suit the background that the pattern is going on. This
now looks very cool. If you wanted to edit the patterns at all, you
can do so in any sprite editor, like SpriteX for example.
To go beyond the preset patterns, you can use a pattern number
less than zero, and even have animating patterns! Try this one for
inze:

Hem * Patternmania.AMOS *
Rem
Load "spritefile.abk“
Flash Off
Get Sprite Palette
Ink 15,0
D0

For N=1 T0 22
Set Pattern -N
Wait Vbl
Bar 0,0 T0 319,199

Next

Loop

Graphics
_

The spritefiIe.abl< mentioned isn't in your memory banks. you'll
have to load a file in direct mode to try this on. Anything except the
octopus.abk should do. Something from Sprite600 perhaps?
Anyway, once you've bashed the program in, run it, and you'll see
the effect. Careful jiggling with the size of the sprites can give you
some very exotic and mesmerising moving patterns.

Pretty Polys
Plotting and line drawing are another thing entirely. You can use
plotting single pixels to do anything from starfields to fractals to
ray traced images, all you need are the algorithms. You can plot the
trajectory of a rocket or plot a graph depicting how many times
your girlfriend has stood you up. (It's painful to reflect on such
things I know.)
To do 3D bas relief effects you could simply draw a series of
coloured lines on the top and sides of a bar (filled box). You can do
similar tricks with filled polygons. using the Polygon and Polyline
commands, like so:

Rem * Polybox1.AMOS *
Rem
Curs Off : Flash Off : Cls 0
Paper 7 : Ink 7

Polygon 0,20 To 20,0 To 299,0 T0 319,20 To 319,80 To
299,100 To 20,100 To 0,80 T0 0,20
Ink 2
Polyline 0,20 To 20,0 To 299,0 To 298,1 To 20,1 To 1,20
Ink 8
Polyline 319,20 To 319,80 To 299,100 To 20,100 T0 21,99
T0 299,99 To 318,80 T0 318,20
Locate ,4 : Centre "Polygon Title for AMOS programs"
Locate ,6 : centre "by Phil South“
Locate ,10 : Centre " Snoutware (c)1992 "

And this can be used for any and all combinations of the above.

Mastering Amiga AMOS

Figure 4.2. Pol)/box1.AMOS.

Using patterns is good too:

Rem * Polybox2.AMOS *

Rem
Curs Off : Flash Off : Cls O
Paper 7 : Ink 7,8 : Set Pattern 8
Polygon 0,20 To 20,0 To 299,0 To 319,20 To 319,80 To
299,100 To 20,100 To 0,80 To 0,20
Ink 2
Polyline 0,20 To 20,0 To 299,0 To 298,1 To 20,1 To 1,20
Ink 8
Polyline 319,20 To 319,80 To 299,100 To 20,100 To 21,99
To 299,99 To 318,80 To 318,20
Locate ,4 : Centre "Pattern Polygon for AMOS programs"
Locate ,6 : Centre "by Phil South"
Locate ,10 : Centre " Snoutware (c)1992 “

giving you a range of ways to create more interesting text screens
with the barest minimum of coding.

Warp-Factor 2
On the subject of plotting single dots to the screen you can go mad
plotting fractals and such (although this is best done line by line as
we'll tackle later on) but one of the most popular uses of single
points on a screen must be starfields. Starfields are the kind of
thing you see in Star Trek on the main viewer, when Captain Kirk
(or Pickard for that matter) says Put it on the main viewer... What
you usually see is the stars zipping past and some big alien ship
threatening the Enterprise. Well, we can't do an alien ship (well we
could as a Bob I suppose) but what I can do very quickly is show
you the starfield.

Rem * Starfield.AMOS *
Rem

Screen Open 0,320,200,16,Lowres
Curs Off : Flash Off
Cls 0
Double Buffer
Hide
CX=Screen Width/2 : CY=Screen Height/2
Update Off
Autoback 0
STARS=2O
Dim X(STARS),Y(STARS)
Dim X_STEP(STARS),Y_STEP(STARS)
Dim C(STARS)
For ST=0 T0 STARS

Gosub INIT_STEP
PHASE=Rnd(CY)/16
X(ST)=PHASE*X_STEP(ST)
Y(ST)=PHASE*Y_STEP(ST)
C(ST)=Rnd(14)+1

Next ST

D0

Cls 0
For ST=0 To STARS

Gosub MOVE
Next ST

Screen Swap
Loop
End

INIT_STEP:
X_STEP(ST)=8-Rnd(16)
Y_STEP(ST)=8-Rnd(16)

Gnaphhm
_

Mastering Amiga AMOS

Return

MOVE:

Add X(ST),X_STEP(ST)
Add Y(ST),Y_STEP(ST)
X=X(ST)
Add X,CX
Y=Y(ST)
Add Y,CY
If X<0 or X>Screen Width or Y<0 or Y>Screen Height

Gosub INIT_STEP
X(ST)=0
Y(ST)=0

End If
Plot X,Y,2
Return

Pretty isn't it. I can sit and watch this one for hours. Of course you
can adjust the flow of stars to be affected by joystick input, which
gives a feeling of movement through space. All you have to do is
alter MOVE to accept input from the stick using the JOY command.
Then you pass this data to the algorithm in MOVE to shift the plot
points of the stars up or down depending on the direction. Or how
about doing a side view so the stars go by as if you’re looking out
of a side window of a space ship?

Req the Place
Using the same principles as we did before in the title box you can
also create 3D Workbench 2 style requesters, with a bit of judicious
boxing and drawing, and one very clever procedure:
Rem * 3D_Req.AMOS *
Rem
Default
Paper 0 : Pen 2 : Cls : Curs Off
REO[“ A 3D Requester",“ Neat eh? ","Continue",""]
Print "Please press S to Stop“
Z=O

MAIN

Procedure MAIN
Shared Z
Do

K$=Upper$(Inkey$)
If K$="S" Then REO["You S for Stop","Did
you?" I’ ll , llcance]-II]

Graphics
—

If Mouse Key=2 Then REO[“You hit the Right Mouse
Button",“Did you?","Yes","Cancel"]
If Z=1 Then REO["0kay Quit, see if I
carell’lllI,lIso.--Il’llL0ng1ll] :

If Z=2 Then Z=O

Loop
End Proc

Procedure REO[T1$,T2$,B1$,B2$]
Shared Z
Screen Open 7,640,60,4,Hires
Screen Display 7,130,110,,
Limit Mouse 215,110 To 350,155

Show

Flash Off
Paper 0 : Cls : Curs Off
Palette $0,$444,$777,$FFP
Reserve Zone 2
If Len(T1$)>33 Then T1$=Left$(T1$,33)
If Len(T2$)>33 Then T2$=Left$(T2$,33)
If Len(B1$)>8 Then B1$=Left$(B1$,8)
If Len(B2$)>8 Then B2$=Left$(B2$,8)
Ink 1 : Bar 170,0 To 470,52
Ink 3 = Bar 171,1 To 410,59
Ink 2 : Bar 171,1 T0 468,58
Ink O : Box 180,10 To 458,30

Mastering Amiga AMOS
 1
| Ink 3 = Draw 130,30 To 453,30

Ink 3 : Draw 458,30 To 458,10
If Len(B1$)>0

Ink 3 : Box 200,37 To 270,52
Ink 0 : Draw 200,52 To 270,52
Ink 0 : Draw 270,52 To 270,37

End If
I If Len(B2$)>0

Ink 3 = Box 350,37 To 430,52
Ink 0 : Draw 360,52 To 430,52
Ink 0 : Draw 430,52 To 430,37

End If
Ink 0,2
Text 184,19,T1$
Text 184,27,T2$
Text 204,47,B1$
Text 364,47,B2$
If Len(B1$)>0 Then Set Zone 1,200,37 To 270,52
If Len(B2$)>O Then Set zone 2,360,37 To 430,52
Do

Z=Mouse Zone
If Z=1 and Mouse Key=1 Then Ink 0 : Box 200,37 To

270,52 : Ink 3 : Draw 200,52 To 270,52 : Ink 3 : Draw
270,52 To 270,37 : Bell 70 : Wait 10 : Screen Close 7 :
Limit Mouse : Pop Proc

If Z=2 and Mouse Key=1 Then Ink 0 : Box 360,37 To
430,52 : Ink 3 : Draw 360,52 To 430,52 : Ink 3 : Draw
430,52 To 430,37 : Bell 40 : Wait 10 : Screen Close 7 :
Limit Mouse : Pop Proc

Loop

End Proc
A great little hunk of code, and thanks to Chris Hurst for the
original idea. There you go, Chris, as promised you’re world
famous!

Graphics
_

There are many other uses of lines and boxes, but what do you do if
you want still more colour from your screen? You can laboriously
paste lines on the screen, or you can get technical and resort to the
graphics coprocessor, or Copper.

Over the Rainbow
Ever wondered how the experts construct those amazing rainbow
Copper patterns in their programs? Well, they are very clever, but
they didn't get that way without a little help from AMOS. Now you
can be very clever too.
One of the most interesting pieces of software to come out of the
AMOS PD Library was the Rainbow Warrior program by Spadge (aka
my old mate Martyn Brown of Newsflash fame). This program lets
you construct and save rainbow Copper patterns for use in your
programs, and it uses mouse moves to let you draw them on screen.
After you've drawn the rainbow of your choice, you can then save it
to disk in a variety of useful formats, like AMOS program code, K-
Seka and Devpac assembly language, and raw code.
The program itself is written in AMOS, and it saves its AMOS code in
ASCII format. To use the code you must Merge ASCII. The code from
a sample output looks a lot like this:

Rem
Rem * Created with RAINBOW WARRIOR - Amos Copper Generator *
Rem * Yup, you can blame good 01' Spadge for this one... *
Rem
Set Rainbow 0,0, 230,"","",""
Rainbow 0,0, 0, 280
Colour Back 0
Restore RDATA
For C=0 To 279 : Read CVA : Rain(0,C)=CVA
Next C : View
RDATA:

Data $0,$0,$0,$0,$0,$0,$0,$0
Data $0,$0,$0,$0,$0,$0,$0,$0
Data $0,$0,$0,$0,$0,$0,$0,$0
Data $0,$0,$0,$0,$0,$0,$0,$0
Data $0,$0,$0,$0,$0,$0,$0,$0

Data
Data
Data

Data
Data
Data
Data

Data

Data
Data
Data
Data
Data

Data
Data
Data
Data
Data
Data

Data
Data
Data
Data
Data

Data
Data
Data
Data

Data
Data
Data

Rem

Mastering Amiga AMOS

$0,$0,s0,$0,$0,$0,$0,$0
$0,$0,$0,s0,$0,$0,$2o0,$300
$400,$500,$o00,$100,$30o,$900,$A00.$D00
$000,$BO0,$A00,$900,$800,$700,$600,$500
$400,$0,$0,$0,$0,$0,$0.$0
s0,s110,$220,$330,$440,$550.$6o0,$770
$330,$990,$AA0,$Be0,$cc0,$0o0,$EE0,$FP0
sFP0,$EE0,$oo0,$cc0,$Be0,$AA0,$990.$880
$770,$360,s550,$440,$330,$220,$0,$0
$0,$0,s0,$0,$0,$0,$0,$0
$0,$0,s0,$0,$0,$0,$0,$0
$0,$0,$0,$0,$0,$0,$0,$0
$0,$0,$3,$4,$5,$6,$7,$8
$9,$A,$B,$C,$D,$E,$F,$F
$E,$D,$C,$B,$A,$9,$8,$7
$6,$5,$4,s3,$0,$0,$0,$0
$0,$0,$0,$0,$0,$0,$0,$0
s0,$0,$0,$0,$0,$0,$0,$0
s0,$0,$0,s0,$0,$0,$0,$0
$0,$0,$0,$0,$0,$0,$0,$0
$0,$0,$0,$0,$0,$0,$0,$0
$0,$0,$0,$0,$0,$0,$0,$0
$0,$0,$0,$0,$0,$0,$0,$0
$0,$0,$0,$0,$0,$0,$0,$0
s0,$0,$0,$0,$0,$0,$0,$0
$0,$0,$0,$0,$0,$0,$0,$0
s0,s0,$0,$0,$0,$0,$0,$0
s0,s0,$0,$0,s0,$0,$0,$0
$0,$0,$0,$0,$0,$0,$0,$0
$0,$0,$0,$0,$0,$0,$0,$0
$0,$0,$0,$0,$0,$0,$0,$0

Graphics
—

Rem * Alter the values in the RAINBOW and SET RAINBOW *
Rem * to position and control the rainbows. See the *
Rem * manual to check on Y positioning, Length and *

Rem * which colour it is to effect.. Have fun! *

You can tap all this in to see what happens, if you like.
You have to add a few things to the code as it's meant to be within a
program, so it expects certain things. If you just run the code, it'll
print a duff rectangle screen over the nice bars. The best thing to
do is open a screen before you go into the bars routine, using
something like:

Screen Open 0,320,256,32,Lowres

and maybe even a Wait Key before the RDATA label, and you'll see
the difference. Alternatively you could change the Colour Back 0
command for Cls 0 for the same effect. This gives you a good idea
of the sort of thing you can generate with Rainbow Warrior very
easily. In fact there are even some other more powerful utilities
around now to do a similar job, so why not ask AMOS PDL or Deja
Vu for a sample of what's possible. Or even do it yourself!

As we found out, Copper routines give you lovely rainbow colour
effects, like smooth graduated skies or seascapes or just rainbow
colours behind your text. To learn how to put a Rainbow behind
text you have to try out the following program:

STRIPI:
Set Rainbow 0,1,280,"","","“
Rainbow 0,0,0,2s0
Colour Back 0
Restore RDATA
For C=0 To 279 : Read CVA : Rain(0,C)=CVA
Next C : View
Return
RDATA:
Data $0,$0,$0,$111,s222,s333,$444,$555
Data $666,$777,$888,$999,$AAA,$BBB,$CCC,$DDD
Data $EEE,$FFF,$FFF,$EEE,$DDD,$CCC,$BBB,$AAA
oata $999,$3a3,$777,$o6e,$555,s444,$333,$222

Mastering Amiga AMOS

Data

Data
Data

Data

Data

Data

Data

Data

Data
Data
Data
Data
Data
Data
Data
Data

Data
Data
Data
Data

Data

Data
Data

Data
Data
Data
Data

Data
Data
Data
Data

Data

s300,$200,$300,$40o,s500,$600,$700,$ao0
$900,$A00,$300,$c00,$000,$E00,$F00.$F00
$EO0,$000,$CO0,$B00,$AOO,$900,$80O,$700
$o00,$500,$400,$300,$200,$20,$30,$40
$50,$60,$70,$30,$90,$A0,$B0,$C°
$D0,$EO,$F0,$FO,$E0,$D0,$C0,$B0
sA0,$90,$30,$70,$60,$50,$40,$30
s30,$0,$1,$2,$3,$4,$5.$6
s7,s3,$9,$A,$B,$C,$D,$E
sF,sP,$E,$0,$0,$B.$A,$9
$a,$7,s5,s5,$4,$3,$2,$1
$0,$0,s22,$33,$44,$55,$66,$77
$33,$99,sAA,$Be,$cc,$DD,$EE,$FF
$FF,sEE,soo,$cc,$BB,$AA,$99,$88
$77,$65,$55,$44,$33,$22,$110,$220
$330,$440,$550,$6o0,$770,$8a0,$990,$AA0
$330,$cc0,$oo0,$EE0,$FP0,$FF0,$EE0,$DD0
$CC0,$BB0,$AA0,$990,$880,$770,$660,$550
s440,$330,$220,$101,s202,$303,$404,$505
ss0o,$70T,$303,$909,$A0A,$B0B,$C0C,$D0D
$EOE,$FOF,$FOF,$EOE,$DOD,$COC,$BOB,$AOA
$909,$803,$707,$o0o,$5o5,$404,$303,$202
$111,$222,$333,$444,$555,$6o6,$777,$8a3
$999,$AAA,$BBB,$CCC,$DDD,$EEE,$FFF,$FFF
$EEE,$DDD,$CCC,$BBB,$AAA,$999,$888,$777
sese,$555,$444,$333,$222,$300,$200.$300
$400,$500,$600,$700,$a00,$900,$A00,$B00
$000,$o00,$E00,$F00,$F00,$E00.$D00.$¢00
$B00,$A00,$900,$800,$700,$600,$500,$400
$300,$200,$20,$30,$40,$50,$60,$70
$30,$90,$A0,$B0,$c0,$D0,$E0,$F0
$F0,$0,$0,$0,$0,$0,$0.$0

Graphics
—

This won't work unless you put a Gosub to STRIPI at the beginning,
but even when it does work there are your stripes of colour on the
screen, but there's still a problem. We can see all the rainbow
stripes and we haven't added any text! Try adding these all
important lines to the top of the program. (At least the top line is
importantl):

Rem * RainbowText.AMOS *
Rem
Cls O : Curs Off : Hide
STRIPI
For X=0 To 23
Pen 1 : Paper O : Print “Rainbow text is easy for
anyone to do!"
Next X

Wait Key
and as you can see when you run it, all the rainbows now show
through the text. The:

Cls 0
covers the screen with colour 0, and:

Curs Off
and:

Hide

blank out the cursor and arrow pointer for our demonstration.
Obviously the Gosub activates the stripes, but here's the impressive
bit. Set Pen to the background colour black, and paper to the
foreground colour, and look what happens when the loop fills the
screen with text Rainbow text!!! Try using this technique for hi-score
tables or even just text in any program you really don't want people
to miss.

Rainbow Ping
To give you some idea of what you can do with rainbows in a game
here is a version of my ping pong program which uses rainbows to
good effect.

Global SCORE1,SCORE2,WON
Screen Open 0,320,200,16,Lowres
Curs Off : Hide

Mastering Amiga AMOS

! Set Rainbow 0,0,202,"","",""
' For C=0 To 201

Rain(0,C)=C
Next C

Rainbow 0,0,49,202
Double Buffer
Paper 0 : Ink 4 : Bar 0,0 To 5,30
Ink 2 = Polyline 0,30 To 0,0 To 5,0
Get Sprite 1,0,0 To 6,31
Cls 0 : Ink 2 : Circle 5,5,2 : Paint 5,5
Get Sprite 2,0,0 To 10,10

TITLE:

Bob Off 1 : Bob Off 2 : Bob Off 3
Cls O : Pen 2

Locate ,7 : Centre "Snouty presents"
Locate ,9 : Centre "Presents"
Pen 3 : Locate ,11 : Centre “R A I N B O W P I N
Gil

Pen 2 : Locate ,13 : Centre "The Sequel"
j Locate ,24 : Pen 2 : Centre "<press a key>“

1 WON=0 : SCORE1=O : SCORE2=0
Wave 0 To 15 : NOISE : Wait Key

RESTART:

If WON=1 Then Goto TITLE

Cls 0
Ink 11 = Bar 0,0 To 319,5 = Bar 0,194 To 319,199
Ink 2 : Bar 160,0 To 165,193
Pen 5 : Locate 0,0 : Centre " Rainbow Ping "
Pen 2 : Locate 0,0 : Print "P1 ";SCORE1 : Locate
34,0 : Print “P2 ";SCORE2;" "
X=15O : Y=1OO

Gnaphhs
—

Y1=5O = Y2=50 :
DX=Rnd(4)+2 = DY=Rnd(2)+1
R1=Rnd(10) = If R1>5 Then ox=-ox
R2=Rnd(10) : If R2>5 Then DY=-DY I

MAIN:
Add x,ox = Add Y,DY = If Y<=5 or Y>=190 Then DY=-DY
Z1=Bob Col(1) : Z2=Bob Col(2) : If Bob Col(4) Then
DX=-DX
If X<=-20 Then LOSEP1 : Goto RESTART
If X>=320 Then LOSEP2 : Goto RESTART

If z1<>0 Then ox=-ox = DX=Rnd(5)+3 : shoot
If Z2<>0 Then DX=Rnd(5)+3 : DX=-DX : Shoot
If Joy(1) and 2 Then Y1=Y1+6 : If Y1>165 Then Y1=165 1
If J0y(1) and 1 Then Y1=Y1-6 = If Y1<5 Then Y1=5
If Joy(0) and 2 Then Y2=Y2+6 = If Y2>165 Then Y2=165
If Joy(0) and 1 Then Y2=Y2-6 : If Y2<5 Then Y2=5
Bob 1,5,Y1,1 = Bob 2,310,Y2,1 = Bob 3,X,Y,2 : Wait 1
Goto MAIN

Procedure LOSEP1
Boom
Pen 3
Locate 0,0
Centre " Good Shot, P2 "
Locate ,24
Centre " <press a key> "
Inc SCORE2

If SCORE2=>10 Then WIN

Wait Key
End Proc

Mastering Amiga AMOS

Procedure LOSEP2
Boom
Pen 3
Locate 0,0

I Centre " Good Shot, P1 "
I Locate ,24

Centre <press a key> "
Inc SCORE1
If SCORE1=>10 Then WIN

Wait Key
End Proc

Procedure WIN
Pen 3 : Locate 0,0 : Centre “ Game Over “

Boom : Wait 30 : Boom : Wait 30 : Boom
Pen 2 : Locate 0,0 : Print "P1 ";SCORE1 : Locate

34,0 : Print "P2 ";SOORE2;" "
Locate ,24
Centre " <press a key> "
WON=1

End Proc

Procedure NOISE
For L=79 To 0 Step -1

Play 96-(20+(L/2)),0
Wait 1

Next L

End Proc
Notice how the program also uses mouse moves, vectors, Bob

. movements and collision detection. Refer back to this listing when
you want to try out some of the techniques you learn in chapters
relating to these subjects.

Graphics
it

Moving Rainbows
Finally a quick word about moving Rainbows. Before you start
putting rainbows in all your AMOS screens, listen up: they take up
huge amounts of memory, and slow everything down. Don't use a
rainbow on a screen with moving objects if you can avoid it. Use
them on still screens where possible. Now you are a computer
graphics expert. You can dress up your screens like a Christmas
tree, and nobody can ignore them.

Footnote
Phew, what a program intensive chapter that was. Don't just type in
all the programs in one go or you'll get very tired and make
mistakes. Take a regular break and save as you go along, it can't do
any harm and it'll ensure you don't lose any work. It can happen so
be warned and take it easy. Right, onto the next bit.

Mastering Amiga AMOS

g
er
5:
Screens

The screen is your canvas in
AMOS, and it's up to you to fill
it with every type of colour
shape and animation possible,
which in AMOS is quite a large
palette and very easy to get
to. The screen operations in
AMOS allow you to create,
move, shape, distort and
generally doodle about with
Amiga screens in any way you
like. Anything you can write,
print, load or draw to the
screen can be manipulated as
easily as you can fold a piece
of paper. All it takes is a grasp
of the required commands,
which as usual is down to you,
but also as usual with AMOS
it's very easy to achieve.

Screen Open
This is the screen command
that you'll use most often, and
this is the way you'll start
almost any program, unless
the default brown LOWRES
screen is adequate for your
purposes.
You can access all the Amiga’s
screen modes with this
command. Obviously if you
want 80 columns of text on
the screen then a 640x256
screen will be needed:

Screen Open 0,640,256,16,Hires

which would be a good start
for any text driven utility
programs. HAM (Hold and
Modify) mode screens can be
opened with:

Mastering Amiga AMOS
 -

Screen Open 0,320,256,4096,Lowres

or some Such. This enables you to load pictures digitised with HAM
devices or to create computed graphics on a HAM mode screen.
Of course any screens for the Digital Creations DCTV or Black Belt
Systems HAM-E will be just as easy to load, as these are basically
tricky versions of normal Amiga screens with the extra colour data
coded into the bitmap somewhere along the line. Read the technical
documentation for these devices for details about the screen types
to open. As a guideline however, I would say 16 colour Hires is
good for both types of screen, and a size of 736x566 for DCTV
would be an idea as it's usually overscan without a screen border.
Probably by the time you read this, you will be able to use the new
Super-hires, Super-hires-interlaced and productivity mode formats
available to the new Release 2 Denise chip (like the ones fitted to
the A3000, A500 and A600 models) in perhaps a new version of
AMOS? We'll have to wait and see about that.

Interlaced Screens
The main types of screen used on an Amiga are Lowres, Hires, HAM
and overscan variations on those. Also you have the option of
Interlace mode, which doubles the vertical resolution with the
slight disadvantage of a little bit of screen flicker. Interlace was
designed to be a TV friendly mode for hires TV graphics, but it
finds a use in any program which needs to have a bit more fine
detail.
To open an interlaced screen just use the following syntax:

Screen Open 0,640,400,16,Laced+Hires
Screen Open 0,320,400,16,Laced+Lowres

orjust:

Screen Open O,320,200,16,Laced

Laced is a newish function for AMOS which was only added after
about version 1.23 or so. Before that it was impossible to use
Interlace without some tricky screen doubling and switching. It's
still not perfect though, and the function is not without its
limitations.
As soon as one screen is opened with interlace, any other screens
become interlaced. The interlacing will only be any good for the
screen actually opened with LACED. All the other ones will just have
their lines doubled on the screen, so remember to reset the
function before you move on to a non-interlaced display.

Screens
M

Interlaced mode is perfect for displaying pictures, but anything
more complicated than that, like for example any kind of
animation, runs at half speed, so of course games should not be
written in interlaced, really. As soon as the last interlaced screen is
closed the whole display returns back to normal mode. Your TV
monitor might not like lots of fast switching from normal to
interlace, so you shouldn't do it over much. Remember a little
interlace is a good thing.
All normal operations are available in interlaced screens. Screen
Offset, Screen Display etc. The only little problem arises because
the interlacing in AMOS is software driven. The bitplanes are
changed during the vertical blank and this particular interlace
process is forbidden during Copper list calculation. So if you have a
large Copper list, ie 4 screens, 1 of which is interlaced, and a
multicoloured rainbow, and then have a Copper calculation to do,
the interlaced screen will display only half of the picture during the
calculation. Nothing can be done to solve this, it is simply a
limitation of the AMOS system. Until the process gets an overhaul
in a future version, this will have to do.

Hide and Seek
AMOS has some very powerful commands for the manipulation of
screens and their contents. What about moving screens around
once you have them defined and loaded? Screen Hide will take a
screen you've loaded and send it away somewhere until it is
needed. To show it again you just need to use the Screen Show
command. As always in AMOS Show/Hide are the exact opposite.
The best place to hide an AMOS screen of course is in a SPACI<1ed
memory bank and as a Packed Picture, as it takes up less memory.
Read the bit in Chapter 2 about Spacking and that‘ll put you right.
Okay, so what else? Screen Copy is used as a part of the process of
scrolling all or part of screens, in combination with Def Scroll,
Scroll and Screen Swap, as we see in this example:

Rem * Screen Copy.AMOS *
Rem
Load Iff "name your path and picture here",1
Screen Open 0,320,256,32,Lowres
Get Palette 1 : Curs Off : Flash Off
Screen Copy 1 To O : Screen 0 : Double Buffer : Bob
Update Off

Mastering Amiga AMOS

S=2
Def Scroll 1,80,80 To 240,240,0,-S : Rem scroll screen
Repeat

For Y=0 To 199 Step S

Scroll 1
Screen Copy 1,80,Y,240,Y+S To 0,80,240-S
Screen Swap
Screen Copy 1,80,Y,240,Y+S To 0,80,240-S
Wait Vbl

Next Y

Screen Swap : Wait Vbl : Scroll 1
Until Mouse Key

The screen you choose is loaded, and an area defined by the Def
Scroll statement is scrolled upwards using the repeat until loop.
This is done smoothly and continuously until the mouse button is
pressed, when the program breaks.
Screen swap uses an invisible screen called the logical screen on
which it renders things like scrolls, like in our example. When the
object or screen has been modified, the results are copied to the
real screen. Logical screens are very useful for smoothing otherwise
slow or clunky rendering routines (see also Double Buffering). Try
the last example and alter the settings to see how it changes when
you adapt certain parts of the program, particularly the Def Scroll
and Screen Copy lines.

Dual Playfield
Now then, this is when it starts to get really interesting. In the
Amiga’s display system, a dual playfield is where two Amiga
screens are visible at the same time, overlaid one on the other,
where one is visible through the other. This is a handy effect for
what they call in the game reviewing business parallax scrolling,
like in the game Shadow of the Beast. (There is a good AMOS demo
which parodies this effect, called Madness Week by a bunch of
clever French AMOS hackers calling themselves Syntex. Get it from
the AMOS PD Library, and you'll see what I mean.)

Screens
M

For good parallax scrolling (contrary to what you might read in
certain Amiga-specific AMOS columns) you need to observe certain
restrictions and keep your mind on what you want out of your
scrolling screens. If you want sheer speed and pure hardware
scrolling, unfortunately you have to figure out ways of making dual
playfield to work properly, which is awkward becuase one of the
playfields will always go haywire once you scroll the other one, just
like some DP demos I've seen in magazines. So this method is only
recommended if you care to sit down and experiment with it for a
few weeks. Slower dual playfield is better as long as you don't need
major league turn of speed or if you scroll single pixels very slowly.
The best way of doing this is to do an overlay from another screen
using Get and Put block. The best parallax scrolling is where you
are doing what we call band parallax, where you're not overlaying.
This is simply a case of setting your Screen Copies up for scrolling
the screen in different bands on the screen, which is the simplest
and fastest way to do it. You must keep the scrolling itself very
simple, so whereas some demos I've seen in magazines only use
half the vertical height of the screen, they scroll the whole screen!
The proper way to do it is to only scroll the areas of the screen
which have the bitmaps in them. This way you're not wasting
processor time scrolling bits of screen which aren't actually part of
the action.
Good examples are to be foundon the demo disk which comes with
TOME 4. The first good example is the Velcro Grub game in which
there are two bands of screen scrolling. Although the effect is of
parallax scrolling. only the bottom two are actually moving, but the
effect is very clean and smooth. The other way of doing it is
depicted in the Starblazer clone also on the TOME disks. The
beautiful thing about that is that it's all done with simple screen
copy commands, and because Screen Copy is so fast you can do
other things and not have it all slow down as soon as you move a
Sprite. Bear in mind that you’re probably going to compile it all
anyway, so it'll go faster than it does when it's interpreted, ie being
run by AMOS, and keep it simple. If you're going to do parallax
scrolling don't use a huge sprite, for example.
As well as parallax scrolling, you can also do a number of other
effects which require some form of transparency and two effects
moving in sync, like this example based on an idea by Peter
Hickman.

Rem * Dual Playfield1.AMOS *

Rem
Screen Open 0,320,48,8,Lowres
Paper 0 : Pen 4 : Flash Off : Curs Off : Cls O

Mastering Amiga AMOS

i Centre At(,0)+"Mastering AMOS"
Centre At(,5)+"It's a breeze!“
Wait Vbl : Screen Clone 2
Wait Vbl : Screen Clone 4
Screen Open 1,320,48,8,Lowres
Flash Off : Curs Off : Cls 0
Wait Vbl : Screen Clone 3
Wait Vbl : Screen Clone 5
Dual Playfield
Dual Playfield
Dual Playfield
Screen Display
Screen Display
Screen Display
Screen Display

0,1
2,3
4,5
2,,200,,
3,,200,,
4,,130,,
5,,130,,

Def Scroll 1,0,0 To 320,56,0, 1
Def Scroll 2,0,0 To 320,56,0,1
Def Scroll 3,0,20 To 320,34,0,-1
Def Scroll 4,0,20 To 320,34,0,1
Repeat

Screen Copy 0,0,0,320,1 To 1,0,1
' Screen Copy 1,0,47,320,48 To 0,0,47

Screen 0
Wait Vbl
Scroll 1
Scroll 3
Screen 1
Scroll 2
Scroll 4

Until False

Dual playfield mode is good for any time when you want to have
_ two screens in motion on the screen at the same time, and

obviously the best applications are going to be games and demos.
' But I can see an application in video titling with a little bit of

thoughtandinuunnanon.

SCVGEIIS
L

Display that Screen!
Another feature, which we've seen in action in the last program to
very good effect, is the Screen Display command. Once a screen has
been defined with Screen Open, you can position it on the monitor
screen with Screen Display. Once a screen has been displayed, it
can be moved with Screen Offset. This means that you can move
the screen by even a single pixel at a time for very smooth scrolling
screens. Try this example for a start:

Rem * Display and 0ffset.AMOS *
Rem
Screen Open 0,640,512,16,Hires
Screen Display 0,128,45,320,200
Flash Off : Hide On : Curs Off : Cls 0
Load Iff "any hires screen.iff“
Screen Copy 0,0,0,640,200 To 0,640,0
Screen Copy 0,0,0,640,200 To 0,0,200

X=0
Y=O

30 Screen Offset 0,X,Y
X=X+1 : If X=640 Then 60

Goto 30
60 Y=200 : Screen Offset 0,X,Y

X=X-1 : If X=O Then 30

Goto 60

The beauty of the Display and Offset types of command is that you
can even have different types of screen, even different resolutions
of screen, nestled up next to each other on the screen! The Amiga is
one of the few computers that can do this kind of display
switching.

Screen Clone
Obviously most of the programs which manipulate screens use two
or more of the available screen commands to load, create, place and
shift screens about. One of the least used is SCREEN CLONE and the
reason is that it's only in a very few applications that you'll want to
copy a screen more than once, unless it's a repeating scroll you're
after, like in the Display and Offset./AMOS screen scroll program. But
for now let's see what happens if we go mad multiplying screens:

Mastering Amiga AMOS

Rem * Screen Cl0ne.AM0S *
Rem
Screen Open 1,1000,20,16,Lowres
Rem Clones=7
C=7
For I=2 To C

Screen Clone I
Next I

0$="Loop: For RO=1 To 125; Let X=X+4; Next RO;"
0$=O$+"For RO=1 To 125; Let X=X-4; Next R0; Jump
Loop"
For I=1 To C

Screen Display I,120,I*40,400,10
channel I To Screen Offset I
Amal I,O$

Next I
A$=" Mastering AMOS gives you the power to clone
yourself"
A$=A$+" eight times using SCREEN CLONE... wow! "
Print A$;

Amal On
D0

Loop

Here we've printed up a small thin screen, cloned it another seven
times and positioned it on the screen. Then we use AMAL to scroll
them back and forth. You could use the same AMAL technique to
scroll screens up and over each other using dual playfield, and rig
it so the screen looks as though it's flipping over on itself.

Special FX
I'd like you to consider some of the options for presenting your
graphics in an AMOS program. Okay so your program isn't a game,
but there's no reason why this should mean it looks bad or boring.
As well as the more complex screen movement commands like the
ones we've gone into just now, there are other kinds of effect which
are more like the kinds of transitions you see on TV. Two of the
presentation tools at your disposal are FADE and APPEAR, but there
are many more.

Screens
IIIIIII

Fade does just what it says, if you want to fade to black or even
another colour, then this will do it. The effect is the same as a fade
in a movie, if you've got something on the screen you can fade it
out to black (or even another colour!) using the Fade command.
Fade works very simply:

Fade [speed]

where SPEED is the speed of the fade. If you don't mention any
colours the fade will be to black. Why would you want to fade to
anything but black? Well how about if you put a logo on the screen,
very large, then fade it to red for example and then print the
instructions to your program in white over the top of it? Very
classy.
You can also fade to the palette of another current screen, like so:

Fade [speed] To [x]

where speed is the speed of the fade, and x is the screen number
containing the new palette. Try this for size:

Rem * Fade demo.AMOS *
Rem
DO

S$=Fsel$("*.*",“","L0ad yourself a screen") : If S$=“"
Then Edit

FADIFF[S$]
Wait Key : Fade 2 : Wait 16*2

Loop
Procedure FADIFF[A$]

Fade 1 : Wait 16
Auto View Off
Load Iff A$,0 : Screen Clone 1 : Screen To Front 0
For X=O To 31 : Colour X,0 : Next
View : Auto View On
Fade 3 To 1 : Screen Close 1

End Proc

Appear is another kettle of fish entirely, although in some ways
similar. With this command you can crossfade between two screens,
hkeso:

Mastering Amiga AMOS

Appear 0 To 1,20

This transforms from one picture to another using the last number
to determine the effect of the fade, that is to say how the
transformation occurs. The best numbers to choose are odd
numbers which are not divisible by 5, strange but very true. Try out
a few numbers with this program:

Rem * Appear.AMOS *
Rem
F$=Fsel$("*.*","","Select a picture")
If F$=“" Then Edit

Load Iff F$,1
If Screen Width>600 Then REZ=Hires Else REZ=Lowres
Screen Open 0,Screen Width,Screen Height,Screen
Col0ur,REZ
Screen Open 2,320,50,2,Lowres
Screen Display 2,,250,,5O
Screen Open 3,320,10,2,Lowres
Screen Display 3,,40,,10
Screen 0 : Screen To Front 0 : Get Palette(1) : Screen To
Front 2
Screen T0 Front 3
Flash Off
D0

Screen 2 : Input "Enter effect ";E
If E>0

Cls : Screen 0
Appear 1 To 0,E

End If

Loop

Each time you enter an effect the blank screen is acted upon
revealing the screen below. Okay, so it’s not a very smooth
crossfade of the type you see on television, but what do you want
for your money, eh? A TV studio in a box? I bet you do.
A good rule of thumb for using Appear and Fade is to put them into
PROCs and this ensures their proper use, like this one for APPEAR:

Screens
M.

Rem * Appear Proc.AMOS *
Rem
Procedure _APPEAR[S,D,X]

Appear S To D,X
End Proc

and this one for FADE:

Rem * Fade Proc.AMOS *
Rem
Procedure _FADE[S]

Fade S
Wait S*15

End Proc

That keeps things nice and simple, and if you just incorporate these
PROCs as you go along (using Merge) you can't go wrong.

More Special FX
The amount of special effects you can achieve with AMOS are
limited only by your skill at using the program, as it allows any
degree of coding skill from BASIC to machine code, and if you know
a lot you can do a lot. But the really beautiful routines are the
simplest, like this selection of great routines originally by James
Lanng:

Rem * Linesleft.AMOS *
Rem
Procedure _LINESLEFT[CL,LINES]

Ink CL

For B=Screen Width/LINES To 0 Step -1
For A=LINES To 0 Step -1

Draw Screen Width/LINES*A+B,O To Screen
Width/LINES*A+B,Screen Height

Next A

Next B

End Proc

Mastering Amiga AMOS

This PROC does a simple wipe from right to left of the colour you
specify in CL and for the amount of the screen from 0-320 you
specify in LINES. Of course the reverse can also be true:

Rem * Linesright.AMOS *
Rem
Procedure HLINESRIGHT[CL,LINES]

Ink CL
For B=O T0 Screen Width/LINES

For A=0 To LINES
Draw Screen Width/LINES*A+B,0 To Screen

Width/LINES*A+B,Screen Height
Next A

Next B
End Proc

Or perhaps you can do two wipes from bottom left and top right at
once:

Rem * Bottomright.AMOS *
Rem
Procedure _BOTTOMRIGHTTOPLEFT[CL]

Ink CL
For A=0 To Screen Width

Draw A,O To A,Screen Height/2
Draw Screen Width-A,Screen Height/2+1 To Screen
Width-A,Screen Height

Next A

End Proc

Or by extension, you can also do wipes up and down
snnuhaneoushc

Rem * Leftup.AMOS *
Rem
Procedure _LEFTUPRIGHTDOWN[CL]

Ink CL
For A=0 To 320

Screens
M

Draw 0,A To 160,A
Draw 160,250-A To 320,250-A

Next A
End Proc

Although these effects are very clever (nice one, James!) they aren't
really manipulating screens so much as covering them up in very
pleasant ways. For some real screen hacking we need to look a little
further.

Let's Splerge!
No talk of AMOS special effects for screens is complete without a
mention of Splerge. Splerge is a brilliant routine written by my mate
Peter Hickman, which first appeared a while back and has been
broadcast on CIX, printed in magazines, and used by all and sundry
since time began. I can't remember the last demo I saw which didn't
obviously use Splerge or a variation on it. It's a classy effect, and
one which takes a devious mind like Pete's and the programming
power of AMOS to create:

Rem * Splerge procedure by Peter Hickman 1991 *
Rem
Procedure _SPLERGE[SPEED,SOURCE,DEST]

Screen SOURCE
SOURCE_SIZE=Screen Height
Screen DEST
DEST_SIZE=Screen Height
V=Min(SOURCE_SIZE,DEST_SIZE)
Screen SOURCE
SOURCE_SIZE=Screen Width
Screen DEST
DEST_SIZE=Screen Width
H=Min(SOURCE_SIZE,DEST_SIZE)
For LOP=V-SPEED To O Step -SPEED

For LOP1=0 To LOP Step SPEED
Screen Copy SOURCE,O,LOP,H,LOP+SPEED To
DEST,0,LOP1

Next LOP1

Mastering Amiga AMOS

Next LOP

End Proc

Tap this in and check it out. What you're basically doing is taking a
source screen (preferably a loaded IFF or a SPACKed screen) and
copying it line by line (or at least linear chunk) to another empty
screen. First you have to set up a couple of screens and turn off all
the usual stuff, and also load a screen to operate on:

Screen Open 1,320,200,32,Lowres
Load Iff "amospic.iff"
Screen Open 2,320,200,32,Lowres

Curs Off : Flash Off : Hide : Cls 0
Get Palette 1
_SPLERGE[2,1,2]
Do : Loop

You could also load another screen to be splerged over, but it's not
essential. Then you grab the palette of the screen you're about to
load so it doesn't take on the odd palette from the blank screen.
Then you activate the effect, passing it some numbers to get going
on, like the speed and the numbers of the source and destination
screens. Then you can either add a do loop at the end like I have or
you can just do a wait key to take you on to another bit of your
program. Make sure there is a prompt to press a key on the screen
or the user will just sit there waiting for something to happen.
It's a great effect for a title screen to a game, especially if you add
perhaps a sample of water pouring into a glass, or even something
a little more rude! I love it.

2/
6:
Windows,
Text and
Menus

The Amiga is a WIMP system,
as you doubtless know. The
original concept of a computer
interface containing Windows,
Icons. Mouse and Pointers was
developed by Xerox at Palo
Alto Research Centre. I once
interviewed Dan Silva the
author of Deluxe Paint, who
used to work there, and he
said that most of the stuff
they invent there will rarely
be used, it's so far in advance
of what we have now that it's
practically science fiction. No
wonder it took so long for
WIMP interfaces, or Graphic
User Interfaces as the suits
prefer to call them, to catch
on in the real world.
When the Amiga was made in
1985 GUIs were all the rage,
so the very forward-looking
designers incorporated a
mouse and a GUI (gooey)
called Workbench in the new
machine. AmigaBASIC's way of
accessing the windows and
menus was adequate but
limited. It's only with AMOS
that we can unleash the real
power of windows and menus.

Clean Windows
If what you have in mind for
your AMOS program isn't a
game but more of what you'd
call a utility or productivity
program, then you'll have to
get a grip on the windowing
aspects of AMOS. A plain
window with pull-down menus
may seem a little bit dull,
although there are ways you
can spice them up, but it’s
totally functional. A window is

Mastering Amiga AMOS

basically an independent little area of text and graphics on the
screen. We'll go into how to make things a little bit more interesting
later on, but for now we'll look at how to create simple window
based programs.
To open a window on the screen you must employ the WIND OPEN
command, like so:

Wind Open 1,1o,10,50,10
This for example would open us a window onto the screen called
window 1, which would have its top left corner at screen location
10,10 and would be 50 characters wide by 10 deep. The practical
upshot of all this is that you can have a couple or more windows on
the screen all of which have their own text running, like this
exannfle:

Rem * Two Windows.AMOS *
Rem
Screen Open 0,640,200,16,Hires
Cls O
Flash Off
Paper 7 : Wind Open 1,0,0,40,20 : Print "Here is a win-
dow..."
Paper 4 : Wind Open 2,320,0,40,20 : Print "So this is a
window, eh?"

Wait Key
Window 1 : Paper 7 : Print “And I can print..."
Wait Key
Window 2 : Paper 4 : Print “...t0 any one I choose..."
Wait Key
Window 1 : Paper 7 : Print "...just by saying Window
x..."

Wait Key
Window 2 : Paper 4 : Print "...and typing whatever I
want...“
Wait Key
Window 1 : Paper 7 : Print "...and up it pops in each..."
Wait Key
Window 2 : Paper 4 : Print "...window I specify!!!"
Wait Key

Windows and Menus
IIIIIIIIIIIIIIII

Each time you hit a key in this program, the next bit of text jumps
up onto the screen specified. Obviously you can take this to
extremes, but only if you don't really care if people can read the
text on the screen because there are so many windows!

Figure 5.1. TwoWindows.AMOS.

Although the windows you get in AMOS aren't the same as the kind
of thing you are used to in AmigaDOS, they still have a range of
styles and shapes, and can be made to act like real windows with
the minimum of tweaking. For example you can resize them, and
even add gadgets like Intuition handles, but all this must be done
manually as Intuition is not loaded when AMOS is running, alas.
Resizing is a good example so let's look at that.

Rem * Resizing Window.AMOS *
Rem
Screen Open 0,640,256,16,Hires
Paper 0 : Cls 0
Wind Save

Reserve Zone 1
Wind Open 1,10,50,20,20,1
Border ,0,4
Title Top " Resize me, babe “
Set Zone 1,10,50 To 10+160,50+160
D0

If Mouse Key=1 and Mouse Z0ne=1
GX1=10 : GY1=5O : RESIZE
Reset Zone 1 : Set Zone 1,GX1,GY1 To GX2,GY2
SX=(GX2-GX1)/8 : SY=(GY2-GY1)/8

Wind Size SX,SY

End If

Mastering Amiga AMOS

Print "AMOS: the only way to fly. ";

Loop
Procedure RESIZE

Shared GX1,GX2,GY1,GY2
Gr Writing 2
Repeat

If Mouse Key=1
GX2=X Screen(X Mouse) : GY2=Y Screen(Y Mouse)
0GX=GX2 : 0GY=GY2
While Mouse Key=1

Box GX1,GY1 To GX2,GY2
GX2=X Screen(X Mouse) : GY2=Y Screen(Y Mouse)
Box GX1,GY1 To GX2,GY2

Wend
Box GX1,GY1 To 0GX,0GY
Box GX1,GY1 To GX2,GY2 : GOTCHA=True
If GX1>GX2 : T=GX1 : GX1=GX2 : GX2=T : End If

If GY1>GY2 : T=GY1 : GY1=GY2 : GY2=T : End If
End If

Until GOTCHA
Gr Writing 1

End Proc

This little program is a neat trick. A window appears on the screen
and you can pull at the bottom righthand corner and click the left
mouse button. The window can then be resized to any size on the
screen, and when you let go the window snaps to that shape. And
better yet, being an AMOS window the text line flows ever upwards
refitting itself to the new window size each time you pull it into a
different shape with the mouse.
In order to grab anything on the screen (unlike the very convenient
Intuition code which does it all for you) you have to draw a window,
and then describe a Zone around it to sense the presence of a
mouse click. Then once you’ve sensed it you have to see where it
moves, and then resize the window with WIND SIZE.
So in this program we first open a hi-res screen and set the colours
(blah blah) as normal. Then we activate WIND SAVE, which means
our windows are smart and don’t screw up anything we might have

Windows and Menus

on the screen below it. This is really groovy because it means you
can open a window over a game screen for example, like an IFF file,
and nothing on the screen will be erased when you close the
window.
Next we RESERVE ZONE, which is what you do every time you are
about to SET ZONE. What this means is that if you:

Reserve Zone 1

you are basically saying look, l’m going to define a zone later on in
the program, so allocate some memory for it and l'll get back to you.
Now we set up all the characteristics of the window we’ll be
defining, in this case Window 1 is a 20x20 character window, whose
top left corner is positioned at location 10,50 on the screen. After
that we set the BORDER and TITLE TOP functions to describe a little
bit more about the window, like the title text, in this case the less
than serious Resize me, babe, and the colours of the border.
The next bit is the interesting part. Next we open up the Zone we
promised earlier. lt covers the area taken up by the window, and
does this by specifying the Zone number, in this case 1, and the
coords of the top left and bottom right corners of the Zone. (Bottom
right is set here by lazily multiplying the top left figures by 160,
that is to say 8*20, 8 being the number of pixels in a character, and
20 being the width of the window.)

Figure 5.2. ResizeWindows.AMOS.

Then we re into the main loop of the program. This checks for the
MOUSE KEY and MOUSE ZONE functions to see if the mouse is
within the Zone and if it has the left mouse button pressed down. If
it does then the PROC called RESIZE is activated.

Mastering Amiga AMOS

The PROC then does all the work, creating a rubber band effect to
show you where the sides of the window are, altering the variables
containing the window coords, and checking to see if the mouse
button has been released yetwith the WHILE WEND loop. Once the
button is released, the window is redrawn to the new size. Once the
new coords have been stored, the old Zone is cancelled and
redrawn to the new size, and it’s all ready to start again.
By the way don't shrink the window too small or you’ll bug out of
the program with a Window T00 Small error. The reason is that the
windows need their border space, and if it can't accommodate them
it can’t draw the window, and boink, it flops out with an error
rnessage.‘You COLHd of course guard againsttins “nth an error
trapping routine which says if the window is too small then redraw
at the smallest size. l’ll let that little project fester in your mind for
a while and move on to the next thing which makes AMOS windows
such fun, and that is sliders.

Slide, Charlie Brown
As well as windows you can also add sliders to your screens, like
the ones you see on regular Amiga screens, like so:

Rem * Slider bars.AMOS *
Rem
Screen Open O,640,256,16,Hires
Flash Off : Curs Off : Double Buffer : Cls O
Paper O : Pen 4
Set Slider 2,4,11,12,4,5,6,9
Reserve Zone 2
Set Zone 1,0,175 To 319,195
HSLIDE[10] : Screen Swap : Wait Vbl : HSLIDE[10]

Set Zone 2,0,0 To 25,170
VSLIDE[10] : Screen Swap : Wait Vbl : VSLIDE[10]
Autoback 0
Do

If Mouse Zone=1 and Mouse Key
X=X Screen(X Mouse)
If X<>XM and Mouse Key=1 : XM=X : End If

End If

Windows and Menus

If Mouse Zone=2 and Mouse Key
Y=Y Screen(Y Mouse)
If Y<>YM and Mouse Key=1 : YM=Y : End If

End If
Locate 5,0 : Print "X s1ider=";X;" " : Locate 22,0 :

Print "Y SLIDER=";Y;" "

VSLIDE[Y] : HSLIDE[X]
Screen Swap : Wait Vbl
Locate 5,0 : Print "X slider=";X;" “ : Locate 22,0 :

Print "Y SLIDER=";Y;“ "
Loop
Procedure HSLIDE[X]

Hslider 0,180 To 319,190,319,X,5
End Proc
Procedure VSLIDE[Y]

Vslider 0,0 To 10,170,170,Y,5
End Proc

Well okay, l’ve never seen any sliders like that before, but then
neither have you. The configuration of the sliders is all done with
the SET SLIDER command at the beginning. Like our resized
window, the sliders must have a Zone around them in order to
function, so if you wanted to have windows and sliders resizing in
the same area you're going to have to do some very clever maths or
make sure that at no time your Zones collide.
ln this case the Zones are around the sliders, and they sense the
mouse in pretty much the same way as before, but this time instead
of resizing the slider, it simply repositions the box in the slider at
the mouse position. You can then feed that position back to scroll a
screen or a piece of text in a buffer or anything like that. All the
usual reasons you’d want to grab a handle on a slider and pull it, in
fact.

No Text Please
Text in your programs is something easily taken for granted. l have
in the past, and l know it’s hard to think beyond the kind of things
that have been possible in clunky old AmigaBASlC, which is what
most people’s programming experience consists of before they
enter the world of AMOS. But AMOS opens up whole new vistas of

Mastering Amiga AMOS

programming scope, and very simply too. So let’s look at how you
can spice up your text, wether it be a game title, hi-score table, or
just title screens of utility programs.
Text in a computer program tells you two things. The words on the
screen tell you what to do, and the style with which they do it tells
you a lot about the programmer’s attention to detail. Normal text
tricks include clever formatting and changes of colour. But more
impressive are changes of font and size. It's like the difference
between typing on a typewriter and making up your text in a DTP
program.
To use text in windows you just have to do a print statement after
you select the window, but you can also change the font using GET
FONTS then use WINDOW FONT to choose the font you want to use.
Using fonts in any screen, even a window, is easy in AMOS, so let's
look a bit more into the kinds of text you can use.

Two Types Text
There are two kinds of text in AMOS, normal text and what they call
graphic text. Normal text is printed to the screen with a PRINT
statement, but graphic text needs to be put to the screen using
TEXT, like so:

Rem * Simple Font Change.AMOS *
Rem
Get Fonts
Paper 8
Set Font 8
Ink 2 : Text 5,50,"Mastering AMOS"

The GET FONTS command scans the ROM and FONTS: directory on
disk for fonts, and SET FONT sets the font to be printed to the
appropriate font in the pecking order. The colour of graphic fonts
is set using the INK command rather than PEN (they’re drawn rather
than printed, being graphics!)
Once you have graphic text under control you can do all manner of
technical tricks like putting shadows under the text:

Rem * Fontshade.AMOS *
Rem
Paper 8 : Curs Off : Hide : Cls
Get Fonts

Windows and Menus

For F=1 To 30
If Font$(F)<>"“

Clw
Print Font$(F)
Set Font F

For Y=20 To 150 Step 20
SHAD[10,Y,"Mastering AMOS",1]

Next

Wait Key
End If

Next

Procedure SHAD[X,Y,A$,D]
Gr Writing 0
Ink 0
For DX=-D To D

Text X+DX,Y-D,A$ = Text X+DX,Y+D,A$
Next
For DY=-D+1 To D-1

Text X-D,Y+DY,A$: Text X+D,Y+DY,A$
Next

Ink 2 = Text x,Y,A$
End Proc

This uses JAM1 mode via the GR WRITING command to ensure a
good impression. Or if you’re particularly clever you can even add a
drop shadow using the same program, by simply changing the last
two lines:

Ink 2 : Text X-2,Y-2,A$
End Proc

This offsets the final white printing of the characters above and to
the left of the black outline, creating a drop shadow. Experiment
with the code and see how many effects you can do, like for
example how about making the last print in the same INK as the
PAPER colour for an outline font? Or to get really flashy.

Mastering Amiga AMOS

1. Use a grey background.
2. Then print in white the first time offset two pixels up and left.
3. Then second offset in black or dark grey two pixels down and

right.

4. Finally the last time in the same grey as the background.
Voila! what you have is a method of turning any font into bas relief.
Clever isn't it?

A Word about CText
More exotic effects can be obtained using Aaron Fothergill’s CText
program, in which graphic text is taken to its extreme. If you get
this program (either from Aaron's AMOS Club or Deja Vu Software)
you can create a font in Deluxe Paint and include it in your program
just like the pros do. The font is stored in an IFF picture file like the
example screen on this page, and then scanned into CText a letter
at a time. Then you can print it to the screen in the same way you
would ordinary text, or even do a scrolly message across another
screen. But I’ll be going into that in more detail in Chapter 7.

Curse of the Cursors
You can also alter the look of your cursor, not only turning it off/on
using CURS OFF. If the cursor gets in the way maybe altering its
appearance will be more appropriate.
SET CURS allows you to input a simple graphic to replace the cursor
line, like so:

Rem * Arrow Cursor.AMOS *
Rem
C1=%1000OO00
C2=%1000OOO
C3=%1000O0
C4=%1000O
C5=%1000OO
C6=%1000OO0
C7=%1000OOO0
C8=%O
Set Curs C1,C2,C3,C4,C5,C6,C7,C8
Wait Key

Windows and Menus
 |

This might not do what you think it does. The binary digits are
clipped to remove any leading 0s. When I put them in it looked like
this:

C1=%1000O0OO

C2=%010000O0

C3=%O0100000

C4=%0OO10000

C5=%0010000O

C6=%O100000O

C7=%10000OO0

C8=%00OOO0OO

Where the ls are in the binary image of the cursor there is a colour
3 pixel, so the little arrow points to the right, just like a greater
than symbol or the AmigaDOS cursor.
So you’ve got windows coming out of your ears, sexy text, different
shaped cursors, what else do you need to make your application
complete? Right, menus.

Simple Menus
If you are coding something other than a game then you’ll have to
get used to generating menus. This is much easier in AMOS than it
is in say AmigaBASIC, where you have to specify everything so
precisely you might as well draw it on the screen with a biro.
Getting a screen together is easy enough with the Screen Open
command, but what do you have to do to make the menus act like a
normal Amiga program? Let’s take it step by step:

Screen Open O,640,256,16,Hires

Nice and simple to start with. Just a med-res screen to give you that
utility look. Now we define our menus:

Menu$(1)=“ Project “
Menu$(1,1)="Load "
Menu$(1,2)="Load As... "
Menu$(1,3)="Save “

Menu$(1,4)="Save As... "

Mastering Amiga AMOS

That’s menu 1 sorted, and as you can see it’s a very simple
procedure to name the menus, with 1 being the menu title, and 1,1
being a sub menu. We do the same for the next menu, but with a
little twist:

Menu$(2)=" About This Game "
Menu$(2,1)=“Start New Game"
Menu$(2,1,1)="Are you sure? “
Menu$(2,1,1,1)=“Yes - 001:"
Menu$(2,1,1,2)="No - Abort"
Menu$(2,2)=“New player...“
Menu$(2,3)="New Opponent...“
Menu$(2,4)="Edit playing field"

You can go on and on adding sub menus like 2,1,1,1,1,1 to infinity,
but bear in mind anything other than one or two sub menus really
gets on the operator’s nerves after a very short while. Finally we
turn the menus on:

Menu On

and at this point the menus are active. You can of course turn them
off later if you don’t want anyone using the menus at a certain
point in the program. Finally, for the benefit of our listing, a few
cosmetic and diagnostic details:

Curs Off : Cls 0

Do
Print "Menu= ";Choice(1);" Selection= ";Choice(2)

Loop

You can now run the program. Notice how the menu and selection
numbers change when you select a different menu item. This is
how you know what the user has selected, and it’s simply that. Find
out what choice 1 and 2 are and you know what menu item was
under the pointer when the user let go of the right mouse button.

More Advanced Menus
To really get to grips with the menus, especially if you have a
number of them, you have to use the AMOS auto menuing system
with ON MENU ON. This takes a little bit of practice, but it’s really
quite simple. The revised program starts the same, pretty much:

Windows and Menus

Screen Open O,640,256,16,Hires
Cls O : Curs Off

Menu$(1)=" Project
MenuS(1,1)="Load "
Menu$(1,2)="Load As... "
Menu$(1,3)=“Save “
Menu$(1,4)=“Save As... "
Menu$(2)=" About Game "
Menu$(2,1)="Start new game"

rMenu$(2,1,1)="A e you sure? "
Menu$(2,1,1,1)="Yes - G01!“
Menu$(2,1,1,2)=“No - Abort"
Menu$(2,2)="New Player"
Menu$(2,3)=“New Opponent"
Menu$(2,4)="Edit playing field"

But at this point it diverts into new territory:

On Menu Proc PROJECT,ABOUT
On Menu On

Menu On
Wait Key

This turns on the AMOS auto menuing system and waits for you to |
either make a selection from the menus or press a key on the '
keyboard. The PROCs you mentioned in the ON MENU ON statement |
are then defined somewhere else in the program, like right now for
exannfle: |

Procedure PROJECT |
Cls
Y=Choice(2)
Locate 0,22 : Print "Menu: Project"
Locate 0,23
If Y=1 Then Print "Load what?“
If Y=2 Then Print "Load as what?" G
If Y=3 Then Print "Save what?"

Mastering Amiga AMOS

If Y=4 Then Print "Save as what?"

OM
End Proc
Procedure ABOUT

Cls
Y=Choice(2)
Locate 0,22 : Print "Menu: About Game“
Locate 0,23
If Y=1 Then Print "Yes Or No? Which is it?“
If Y=2 Then Print "No I won't!"
If Y=3 Then Print "He'll do it himself"
If Y=4 Then Print “Feature not implemented"
OM

End Proc
End
Procedure OM

On Menu On

End Proc

And there you have it, the responses are put into PROCs and this
makes the whole thing a lot simpler. You only have to scan for one
variable CHOICE(2) because the first one, the menu itself is chosen
for you automatically, and you’re sent right to the PROC that deals
with that menu. Once you’ve got subroutines accepting input from
menus, you’ve got yourself the basis for a menu driven utility
progranm

Graphic Menus
This is one area which has a few layers of subtlety which are rarely
touched upon. Keyboard shortcuts are one thing, graphic menus are
another (and that’s something you can’t do easily in Intuition, eh?)
plus the other tricky menu type, movable menus.
Theres soinuch uathe nmnuisysunnsin AhH)Sthatymnfd be
surprised. The system is so much more flexible than AmigaDOS, it
makes you wonder why people still program in C and machine code
at all.

Windows and Menus

This next program is an example of using menus in a very unusual
way, and one which is very hard to do using normal AmigaDOS
menus:

Rem * Bobs on a menu.AMOS *
Rem

Load “dfO:sprite_600/aliens/alien1.abk”
Load “dfO:sprite_600/space/ship1.abk”,1
Flash Off : Cls 0
Get Sprite Palette
Menu$(1)=”(Bob 1)Bugs” : Menu$(1,1)=”(Bob 2)This
Bug” : Menu$(1,2)=”(Bob 3)That Bug”
Menu$(2)=”(Bob 21)Ships” : Menu$(2,1)=”(Bob 22)This
Ship” : Menu$(2,2)=”(Bob 23)That Ship”
Menu On
Do
Loop

This program uses the Bobs from the Sprite_600 set so have those
ready in drive df0:. The Bobs appear on the menus, and they act
like normal menus except that they have these great pictures on
them too. The pictures can be instructive, or they could even be
graphics of text! Imagine all the menu text showing up as street
graffiti or cobwebs or clouds, depending on the tone of your
program. You can do the same with Sprites and Icons too.

Cursor the Crimson Altar ll
Cursor designing? Okay, pretty low on the old priorities for the
moment, but when you get into programming things which use text
rather than pictures, you’ll be glad to get rid of the standard AMOS
cursor. For everyone who wants to get busy tapping out their own
cursors, I'd recommend a program from AMOS PD Library disk 394
called Swiz. lt’s a cursor editor, containing a number of example
cursors. Here’s some of mine which I created with the program:

Rem SWIZ V1.0 data file
Rem
i

Rem * Alien *

Mastering Amiga AMOS

Set Curs
%O0111100,%O1111110,%10011001,%10011001,%11111111,%O
O111100,%O0100100,%O1100110
Wait Key
Rem * Arrow2 *
Set Curs
aoooooooo,%ooooo1oo,aooooo11o,%11111111,a11111111,%o
0000110,%OOOOO100,%00OO000O
Wait Key
Rem * BigArrow *
Set Curs
%11000O00,%1111000O,%11111100,%11111111,%11111111,%1
1111100,%1111000O,%11000OOO
Wait Key
Rem * Smiley *
Set Curs
%00111100,%01000010,%10100101,%1000o001,%100o0001,%1
0011001,%O1000010,%00111100
Wait Key
Rem * SmallArrow *
Set Curs
%1000OO0O,%11000OOO,%111000OO,%1111000O,%1111000O,%1
11000OO,%11000OOO,%1000OO0O
Wait Key
Rem * Heart *
Set Curs
%O0O0OOOO,%O1101100,%11111110,%11111110,%01111100,%O
O111000,%OOO1000O,%0OOO0OOO
Wait Key

The joy of the Swiz program is that it allows you to concentrate on
the precise design of your cursor while it stores away all the
information for later transmission to disk as an ASCII file which can
then be merged with your programs. Okay it’s not earth-shattering,
but it is a nice little go-faster stripe for your AMOS system.
You can do other types of tricks with cursors too, using the CLINE,
CUP, CDOWN, CLEFT and CRIGHT commands:

Rem * Cline, Cup & Friends.AMOS

Rem
Screen Open O,640,256,16,Hires
Hide : Paper O : Pen 4 : Cls 0
Wait 100 : Bell : Print “Hello playmates!”
Cdown : Wait 100 : Cdown

Bell : Pen 6 : Centre “The cursor just
down... to here” :
Cdown : Wait 100
Bell : Pen 2 : Print “then here...”
Cdown : Cdown
For LEFT=1 To 50

Cleft
Wait 1

Next LEFT

Wait 100 : Pen 12 : Bell

Print “now over here”;
Wait 1OO : Cdown : Cdown

Wait 100 : Cright : Cright : Cright
Bell : Pen 14 : Print “Now over here”;
For UP=O To 6

Cup

Wait 1
Next UP
Wait 100 : Bell : Pen 10
Print “and finally up here” : Wait 100
Cmove 5,20
Pen 3 : Wait 5O : Print “Or what about
to this location with CMOVE?”
Wait 100
Pen 4 : Locate ,24 : Centre “AND NOW ERASE EVERY-
THING A LINE AT A TIME"
Wait 1OO

* I

Windows and Menus

jumped

snapping 5,20

Mastering Amiga AMOS

Home : Paper 6
For X=O To 30

Cline
Locate ,X
Wait 1O

Next
Wait 200

Locate ,1O : Pen 2 : Centre “And that my friends is
the Cursor commands”
Wait 500 : Edit

This is a simple demo of the cursor command set, which throws the
lines of text around the screen in various interesting ways and
pings a bell to draw your attention to what's happened. The demo
flips you back to the editor when it’s finished.

Hyper Hypertext
To what use can we put this windowing menu and text system? Well
the obvious choice is a Hypertext system, just like the kind of thing
you can do with INO\/Atronics’ CanDo system or one of those other
systems. All you need to do is set up buttons on screen with Zones
on them and you can load pictures from a CD drive, or text files in
scrolling windows with slider bars to control the flow, and Zones
over certain items of text to take you onto other areas. The
possibilities are endless.

I fa
7:
CText

I’ve mentioned CText and
other types of extension to the
AMOS language, but not as yet
gone into any details about
how you would use it.
However now is the time.
CText is another extension to
the AMOS language written by
Aaron Fothergill of Shadow
Software, and you bolt it onto
your AMOS system like any
other extension. First you use
the INSTALL program to copy
the library CTEXT.Lib into
your AMOS_SYSTEM directory,
and then you make use of the
Config1.x.AMOS program,
whatever your system is, to
ensure that AMOS knows the
extension is loaded and ready
to go. Once installed the
extension appears on the
startup screen in AMOS and
the commands become part of
the AMOS command set.

I, CText
CText stands for Colour Text,
and it is an extension to the
AMOS language which enables
you to use colour fonts which
are in fact icon bank based
fonts. In other words the font
is made from icons rather
than text, and where you
would normally use TEXT
commands, you now can use
CTEXT commands instead to
give you glorious colour fonts.
These can be drawn in up to
64 colours using any Amiga
paint program, and can be
displayed on the screen using
proportional spacing and even
kerning. CText Fonts are
loaded in as icon banks, and

Mastering Amiga AMOS

once loaded don’t need to be loaded again. When they’re needed
you just call them up and if they are loaded into the correct bank
they are typed up to the screen like any normal font.

Figure ?.1. A colour font for CText.

In use in an AMOS environment, CText works exactly the same way
as the TEXT command, and in fact displays faster than using TEXT
with a disk based font. On the CText disk, you have two versions of
the CText extension, one for AMOS 1.23 and one for V1.3 and
upwards, what you’d call the compiler versions of AMOS.

Installing
These are installed with an AMOS program called
CText_INSTALL.AMOS, which you run. In the new version of CText,
called CText 2.0, there is a new version of the FONT_SETTER.AMOS
program, which is used to set up your Ctext fonts for use. Also on
the disk are a number of demos for you to run and examine, and a
huge directory of fonts for you to try out. Table 7.1 gives you a list
of these, and those who’ve had lots of font experience with DTP on
Amiga and Mac will recognise some of these names.
All of the programs on previous versions of CText were supplied in
two forms, for V1.23 and V1.3 of AMOS, and this was because the
extension systems for these versions of AMOS are slightly different,
and require slightly different versions of the CText extension.
There‘s only one version of the new system as this CText 2.0 is only
available as an upgrade to the original system.

A1<ashi22
Aldous 1 2
Andover
AvantG1 Z
Bigtext
Bookrnanl 1
bubbles 1 6
Bu.bbles2 1
Came1ot2 1
Ge1tic15
Courier 1 1
cutoui32
DemoFont1
DemoFont2
DemoFont3
Diamond
DIAMONDBIG

digital 1 6uo
digita132uo
DPAINT
fsstencil

Fuiurebig
futuresmall
Ga.rnet9
Ham
Helvetica 1 2
LINEALZ4
Longl 1 5
LOSANGELES14

Manhattan
Microsoft 1 5
MONACO1 1

Opal9
outlj.ne32

Pa1oAlto 1 5
Park__Ave
Peignot44
Pica 1 1
Ruby
RUBYSTENCIL
SanPrancisco
SAPHIREBIG
sapphire 1 6
Stencill 5
stripe
stripes32
Swansong 1 5
TIMES1 2
TimesStencil
Tiny

Table 7.1. Demo fonts with the CText System.

CText
M

Uslng CText
Ctext is designed to be used as a replacement to the TEXT
command in AMOS. Instead of using the usual methods of getting
coloured text, that is to say IFF fonts and a lot of judicious
programming, it simply uses an ICON bank (bank swapped to bank
10) to store all the characters, and a small 768 byte data table to
show which icon to use for each of the 256 characters, and the
Width and the Baseline of each character (for proportional spacing
mode). If you’re only using non-proportional text with a set width
and baseline, then bytes 2 and 3 are ignored. One of CText’s neat
tricks, is that you can assign the same icon to several characters.
CText requires its icons in Bank 10, so normally you would load
them into Bank 2 as normal, using NO ICON MASK or MAKE ICON
MASK as required and then use the BANK SWAP command to swap
them into bank 10, like so:

Bank swap 2,10

Mastering Amiga AMOS

The only other thing you have to load for the font is the 768 byte
font data table:

BLOAD "afont.abk.CFNT",font data

The Fontsetter program always saves the font data as the name of
the icon bank with a .CFNT on the end.
This routine will load a Ctext font into memory:

F$=“Bigfont“
Load F$+“.abk"
Make Icon Mask
Bank Swap 2,10
Bload F$+".abk.cfnt",Font Data

Once you have your own copy of CText 2.0 you could try this
program to run through a few of the fonts to see what they look
Hke:

Rem * Show CText Fonts.AMOS *
Rem
Do

Curs Off : Flash Off : Cls O
Erase 2

Erase 10
F$=Fsel$("CTEXT2:fonts/*.abk",“","Load a CFont")
Load F$
No Icon Mask
Get Icon Palette
Bank Swap 2,10
Bload F$+".cfnt",Font Data

Autoback O
Font Size 0,0
Ctext 10,30,"Hello World, CText here!“
Wait Key

Loop

CText
—

The program will pop up a file requester for you to load a font and
then load it. NO ICON MASK means that the font isn’t transparent
on colour 0, but then on a black screen it doesn't have to be. If you
wanted to overlay text on top of something else, you could set
MAKE ICON MASK instead.
GET ICON PALETTE obviously grabs the palette of the icon bank, in
this case the font we loaded. BANK SWAP switches the iconised font
to bank 10 where CText operates from, and BLOAD etc loads in the
Font Data file. The word FONT DATA is a reserved variable and this
is where the 768 bytes of data will go into memory. The font is
displayed, and waits until you press a key, when the whole
business starts over again.

CText Commands
In CText 2.0 there are a number of new commands you can use, and
they go something like this:

Font Size x,y
This sets up the width and baseline of the font. If zero is used in X
or Y, then the relevant width or baseline table will be used from the
data area. e.g:

Font Size 32,16 : All characters 32 width, 16 base-
line

Font Size 0,16 : Use Proportional width, but fixed
16 pixel baseline

Font Size 11,0 : Use Fixed 11 pixel width, with pro-
portional baseline

Font Size 0,0 : Use fully proportional

CText x,y,string$
The command to use the text is the CText command, which uses
exactly the same parameters as the TEXT command, so you can
simply change all your TEXT commands to CText, and your
programs will run as normal.

Font n
Multifonts are a new feature and this command allows you to
choose the font number from your program, where n is the number
of the font.

Mastering Amiga AMOS

Font Banks a,b
Normally CText uses bank 10 to store the icons and bank 11 to
store font data for multifonts. But you might want to switch banks
for some reason, like something else in your program is already
inhabiting the space. Well, this command allows you to set the
multifont bank (a) and the icon bank (b).

Font Shift x
This is a method of kerning the text, so that the letters tuck into
each other a little more or less. This makes text take up a little less
room, but it also makes it more attractive in some cases.

Font Step y
This makes it possible to angle the text up or down in steps.

Ct Double x,y
This prints the font twice with a small offset.

Set Ctab n,x
This sets up tab points across the screen. If you’ve ever used a
word processor or a typewriter then this will make some kind of
sense to you.
There are also a number of new functions for use with the system,
like:

=PLEN(string)
Returns the pixel length of the string. This is so you can predict the
length of the string on the screen.

=Pl-IEIGI-lT(string)
The height of the string, just like PLEN.

=LAST CTX
Detects the position of the last pixel in the last string.
=CFONT$(n)
Changes fonts mid string
=KERN$(n)
Similar job as CFONT but for kerning.

=CTAB
Tabs text from within a string.

CText
M,

=FONT BASE

=FONT DATA
Returns the location in memory of the Ctext and Font Data areas.
Useful for creating special effects in machine code.
All these new functions improve the way you can use the program
about a hundredfold, and quite a number of the commands allow
you to create moving text with great ease. The creation and
manipulation of text couldn’t be simpler. So how do you create a
font for use with the CText extension?

Making a CText Font
Ctext fonts are very easy to make. You need to create a bank of
AMOS icons, each icon being a character in the font. There are
already a number of disks in the Public Domain which contain
colour fonts as IFF files. And the beauty of it is that there are no
colour, bitplane or size restrictions either, so if AMOS can display
the IFF file, CText can display the font. PD disks abound but one of
the best ways to do it is to take a PD font and adapt it, so you can
steal the brilliant design ideas but use your own palette, or
variation on their theme etc.
Okay so you want to create your own font. You’ll need Deluxe Paint
for this. I could cover all the bases by saying “you can use any IFF
compatible paint program for this" but who am I kidding? Everyone
uses DPaint so what’s the use in fighting it! You create a font by
placing all the characters onto the screen in rows, like this:

ABCDEFGHI-J

KLMNOPQRST

UVWXYZ

B'tC

making sure that there are spaces between all the characters. Then
save the screen as an IFF file to disk.
Next you load up SpriteX and cut out the characters as Sprites,
using the built-in sprite grabber. Once you have cut them out, you
go through the bank with Auto scrunch on to eliminate any waste
space. (Newer versions of SpriteX allow you to press the Z key to do
this automatically.) Once you’ve done this and you’re with the font,
hit the SWAP button on the top row, so that the sprite bank
becomes an icon bank.
After that you need to use the Fontsetter program. This utility is
used to assign icons to ASCII characters as well as widths and
baselines. By clicking on any of the ASCII characters listed, the

Mastering Amiga AMOS

image used for it will appear in the lefthand editing box at the
bottom of the screen. You can use the left mouse button to drag the
baseline/width lines around this character, or click with the right
button to automatically set the width as the width of the icon + 2
pixels and the baseline to the bottom of the icon. Clicking on the
ASCII characters with the Right button will store the icon shown in
the righthand box to that character.
Multifonts are a CText font with more than one character set in
them. This means you can have a number of designs in your
program all at once, rather than just one set which might get a bit
boring after a short while. The creation of multiple font types in a
single bank is handled quite amply by the Fontsetter program.
Using Fontsetter you can create fonts from scratch, but with the
Font Converter program you can convert directly from a regular
AmigaDOS font to a CText font. This means that you can use the
wealth of colorfonts available in the Public Domain and commercial
fields, like the epic Karafonts set. Whichever route you take to
generating your CText fonts you won’t regret it as this is the best
way to handle fonts for games in AMOS.
To make life even easier there's a tutorial program included on the
disk, which takes you through all the different aspects of using the
program, and making sure that you grasp all the basic concepts.

CText, How Easy It ls
As you can see it’s all a piece of cake, and I can highly recommend
this program to anyone who‘s serious about AMOS programming.
The flexibility and speed of the system is such that I can’t see
anyone using those stupid old IFF font routines ever again. But to
get the most out of CText, you really need to use SpriteX, and as
luck would have it there’s a new revision of that out by the time
you read this. See Chapter 10 for more details about SpriteX 2.0.

sea
Maths
Functions

Computing is all about maths
when all’s said and done. The
fact however is that, although
computing at the high end
may use maths which makes
your brain squirt out of your
ears at high pressure, for the
most part O Level maths will
get you through without any
personal injury. If you intend
including a lot of maths in
your programs, I feel bound to
persuade you to get a book on
basic maths. From this you
can glean all the essential
materials for you to include
mathematical formulae in
your programs if you, like me,
never paid attention in school.
It’s handy to know things like,
for example, how to calculate
the area of a circle although,
having said that, AMOS can
take a lot of the weight off
your shoulders by supplying
much of the hard number
crunching power in the form
of its mathematical functions.
I’ll delve into the built in
functions a little later on in
this chapter. But for now.

Let's Talk about Maths
When you mention maths in
polite conversation in most
circles, and people turn off.
People react as if you’ve said
something really offensive,
and this becomes even more
offensive it seems in print.
Stephen Hawkins says in his
book A Brief History Of Time
that there's a saying that
every formula you include in
your book halves the
readership of said book. This

Mastering Amiga AMOS

needn't be the case, especially if the point of your book is
programming, in which case a certain amount of maths talk is
unavoidable. The main stumbling block for people is to realise that
maths is actually good fun as long as you don't get out of your
depth, a bit like swimming. Take easy steps and soon you'll treat
every outing as a pleasure rather than something to be feared or
dreaded.
The secret with mathematics is to get the right reference books and
read them very carefully. I like two which spring to mind as
inspiring maths books, which make it fun. The first is Mathematics
For Everyman by Laurie Buxton (Dent 1984), which is a very
readable and friendly book about the joy of maths. It takes you
through a lot of the very easy stuff and, more than that, explains
reasons why maths can be fun. The second book is the more wordy
and slightly more learned Mathematician's Delight by WW Sawyer
(Penguin 1943) which has appeared in paperback a number of
times. (You may have to buy it from an out of print book service
like that offered by Waterstones, or order it from the library!) Buy
both these books and read them to bits, then you'll be ready to take
on almost any thick book of formulae without so much as breaking
a sweat.

Basic Functions
AMOS contains a lot of maths functions, and although a small
amount of mathematical knowledge is good for a programmer, it's
more a case of knowing what you need to know and leave it at that.
You don't need to know the equation for calculating the amount of
black holes in the Universe off the top of your head, you just need
to be able to look it up somewhere and understand enough to know
an equation when you see one. Although it might not ever occur to
you to actually use any maths functions in your programs, they can
in fact be incredibly useful, and this is the reason why. You can
bang bang nails into wood by hand, especially if you're a karate
expert. But a more elegant and less painful solution is to use a
hammer, a purpose built tool for the job. This is why maths
functions are useful, and this is precisely why you should use
them. The right tool for the rightjob.

AMOS Maths
The maths functions in AMOS use the standard Amiga maths library
found on most Amiga disks, at least the ones with most of the
Workbench files on anyway. So in order to use maths functions
from an AMOS program you need to ensure you have the
MATHTRANS.LIBRARY in the libs: folder of the disk from which the
program is booting. This includes any compiled programs and

Maths Functions
 .

obviously any programs running from RAMOS. For the most part
this is dealt with by booting from your AMOS disk anyway, but if
you run into problems this is sometimes a good thing to check.
Obviously you need to use the correct AMOS number types to
perform any operations, so trying to use integer numbers with a
function that expects a floating point number will cause problems
in your output. Check the various variable types I mentioned in
Chapter 3.

Now what sort of maths are we talking about? Well, in most cases
the way you'll be using maths is if you want to draw complex
shapes like 3D, unless you stump up the cash for AMOS 3D that is.
Vectors they are called, and basically they are points in space.
You'll have to read up on angles and moving vectors
(transformation that's called) before you embark on a project. But
basically what you have to know about angles in AMOS is that they
will be expressed in radians.

A Few Degrees
For the treatment of angles (for the creation and movement of
points in space for example) AMOS will use radians as a default, as
opposed to degrees. Why this is I don't know, because I never
studied radians and don’t know them from Adam. Francois Lionet
obviously knows radians better or they are easier to code, I don't
know. But what I do know is that if you want to have AMOS
recognise degrees all you have to do is type:

Degrees

and all will be well. This affects all the trigonometric functions and
all their input and output will be translated accordingly. Obviously
to switch back from degrees to radians you will type:

Radians

which apart from sounding like some new washing powder is in fact
the way you switch back to the default method.

A Slice of Pl
Another branch of maths which will be of interest to the budding
top end programmer is geometry and trigonometry. This is all
about angles too, but geometry is more familiar territory for those
of us who thought we'd never need to know how many men it takes
to half fill a bath of water. Diameters of circles, areas of triangles,
space and volume. That’s trigonometry country.

Mastering Amiga AMOS

As you will doubtless recall from your maths lessons, Pl is a
constant much used in trigonometry to calculate angles, eg the
circumference of a circle is calculated by 2 times PI times the
radius, or 2PIr. The AMOS version of PI is PI#, with a special version
of the # symbol to help distinguish it from any other variables. So
to calculate the circumference of a circle we could do this:

Rem * Circumference.AMOS *
Rem
Screen Open O,640,256,16,Hires
Paper O : Pen 2
Cls O
Input "The radius of the circle is ?";R#
Print "The circumference is";2*Pi#*R#
Wait Key

The word trigonometry comes from the greek meaning the measure
of triangles, and so knowing a bit about angles is a good thing. All
this maths isn’t just good for its own sake, you see. It's handy to
have a little maths if you want to create a really original game, for
example, as you can speed your way by knowing how to divide up
things like memory and screen space, using formulas rather than
the old fashioned brute force and ignorance.
Triangles and a certain Pythagoras are linked by the theorem which
we all learn in school “the square of the hypotenuse of the right
angle triangle is equal to the sum of the square of the other two
sides", and the joke about squaws on hippopotamus hides, etc. The
angles of the corners of a triangle add up to 180 degrees, so there
are a number of ways to calculate the area of a triangle. One of my
favourites, by a strange coincidence, employs another of the AMOS
trigonometry functions, SIN or sine. The area of a triangle is equal
to half the sum of the length of two of the sides (let's say sides b
and c for argument) and the sine of the angle between them.
Obviously if you know the length of the sides and one of the angles,
it's easy to figure the remaining angles.
But sines are better known perhaps for generating sine waves like
this one:

Rem * Sine Wave.AMOS *
Screen Open 1,640,256,16,Hires
Degree
For X=O To 640

Maths Functions

Y#=Sin(X)
Plot X,Y#*50+1OO

Next X

As a sound wave the sine has a pure sweet tone, like a flute or pipes
but we'll go into that a bit more when we cover sound (see Chapter
16).

Trigonometry Fountain
To fully appreciate the sort of effects you can get using maths
rather than plain graphics, check out the effect from this program
using a range of the various trigonometry functions available to
you in AMOS:

Rem * Triginomitry Fountain.AMOS *
Rem
Screen Open 1,320,256,32,Lowres
Curs Off : Cls O : Flash Off
NM#=81

P1#=4*Atan(1)
DE#=0.05

SX#=160/Sqr(3) = SY#=23O
For N=1 To NM#

A#=P1#*(-1+2*N/NM#)
Gr Locate 160,100
For T#=0 To 3 Step DE#

X#=T#*Cos(A#) : Y#=T#*(Sin(A#)-T#/2)
If Y#>-0.4

Z=Rnd(15)
Ink Z
Draw To SX#*X#+160,100-SY#*Y#

Else
T#=3

End If
Next T#

Next N

Mastering Amiga AMOS

It's a recursive program, meaning it takes the basic premise of
running a curved line down the screen and runs through the
procedure a number of times via the FOR NEXT loop. The word
recursive brings us to another kind of geometry much used in
computers over the last ten years, and that is fractal geometry.

Fractal Maths
The word fractal was first coined in the late '70s by an IBM scientist
called Benoit B Mandelbrot, and has since passed into popular
usage. People now know what one looks like (which is more than
they did when I was banging on about them years ago) and they can
usually mumble a few words about where they come from and what
they're for. But few people really know much about them.
Fractals are a part of a bigger field called chaos theory, which is
based on a little understood series of experiments and theories
which produce unpredictable results for no reason. You send
random data to an object or program and the result is a strangely
ordered pattern, which is odd considering the random input. The
theory was invented years ago before computers, but it's only since
computers have been around that people have been able to see
what these curves look like. Computers use fractals to produce
imitations of natural phenomena, and AMOS can do this too.
We've touched on fractals and mandlebrots, but how do you
actually go about generating them? It's complicated, but like our
previous example the answer is a recursive approach, where a
formula is fed repetitively with random information, and the
distribution of the output is displayed on the screen. You can do
this in one of two ways. Either plot each dot to the screen, which
takes ages and doesn't give you a very good screen display. Or you
can draw the whole thing line by line, which is the way almost all
mandelbrot programs work. Here's a simple example of that
process:

Rem * Simple Mandelbrot.AMOS *
Rem
Screen Open O,320,220,32,Lowres
Flash Off : Hide On : Curs Off : Cls O
Pen 2 : Paper O

D0

X=32O

Y=200

Maths Functions

Z=32

Cls 0
FRAC[X,Y,Z]
Wait Key

Loop

Procedure FRAC[X,Y,Z]
CY=Y : CX=X : K=Z

XN#=-2.25 : XX=O.75 : YN#=-1.5 : YX#=1.5

H#=(XX#-XN#)/CX : V#=(YX#-YN#)/CY

For A=0 To CY-1
For B=O To CX-1

M#=XN#+B*H# : N#=YN#+A*V# : D=O : X#=O : Y#=O

L:
W#=X#*X# : Z#=Y#*Y# : R#=W#+Z# : Y#=2*X#*Y#+N# :
X#=W#-Z#+M# : Inc

If R#<4 and D<K Then Goto L

If o=z Then o=o
Plot B,A,D

Next A

End Proc

All the work is done in the procedure FRAC, and first it sets up the
basic integer variables CY, CX and K and some other variables of a
more floating point nature. These are minimum and maximum
values of X and Y. The loop takes the initial values and pumps them
through the function repeatedly and a line is plotted to the screen
of a certain distance of a certain colour. An entire basic mandlebrot
curve is printed line by line to the screen. Obviously you can add
zoom routines which redraw a certain part of the formula and the

Next B |

" I

Mastering Amiga AMOS

screen in more detail. If you decide to take a pop at this I'll advise
| that you make sure the level of magnification is compensated for

by levels of precision In your maths.

Figure 8.1. A mandelbrot from the program.

More AMOS Maths Functions
The beauty of having built in maths functions is that, like a
scientific calculator, the AMOS program can accept data directly
from a formula in a book. So from any of those maths books I
mentioned earlier you can lift a formula and build a program
around it. The formula forms the basic routine of your program.

Figure 8.2. A nice maths formula.

Like for example the formula in Figure 6.2 translates as the
following:

XF=XB+(XR/3)+(SIN(X)/TAN(XR))
This formula isn’t to do anything in particluar, so running it won't
answer any big questions in the cosmos, but it does demonstrate
how to translate a mathematical formula into AMOS code.

Gimme a Vector, Victor
Finally, another area where maths can help you is in the field of
vectors, like the ones I mentioned earlier.

Maths Functions

Vectors are basically a change in direction of an object or point in
space. Hence their use in transport especially aeroplanes and space
vehicles like the space shuttle. As an AMOS idea vectors are
interesting for the construction of games and graphics, as
exemplified in Aaron Fothergill's Brickout and Ping games.
The thought is this: you have to use two variables to hold the x and
y coordinates of the sprite position. You use these two variables to
hold the x and y movements of the Sprite in each frame of the
animation. Like so:

Rem * Vectors1.AMOS *
Rem
Curs Off : Hide : Flash Off : Cls O : Ink 4,4 :
Paper O
Input “X Vector “;DX#
Input "Y Vector ";DY#
Cls 0 : Bar 0,0 To 3,3
Get Bob 1,0,0 To 4,4
Cls 0
X#=160 : Y#=100

While X#>O and X#<32O and Y#>O and Y#<20O
Bob 1,X#,Y#,1
Wait Vbl
X#=X#+DX#
Y#=Y#+DY#

Wend

End

This shows you the principle. You start by inputting the x and y
direction vectors and this has a result on the direction that the
Sprite will go. It's best to try a range of numbers between -8 and 8
for each of the vectors. First the vectors you require are accepted
through the unput command and stored in two variables called DX
and DY. The Bob used in the program is grabbed from the screen
using Get Bob, having first been placed there using a Bar command.
Then the start position of the Bob is set to x=160 and y=I00, or the
middle of the screen. A While Wend loop is then activated to move
the Sprite in the the direction given by the vectors. (Once you've
learned a bit about vectors you'll be able to predict the precise

Mastering Amiga AMOS

direction!) The Bob is moved until it reaches the edge of the screen,
either less than screen position 0 at the top or left of the screen, or
screen position 320 or 200 to the right or bottom.
Each time the While Wend goes around, the DX and DY vectors are
added to the current coordinates, thus affecting the direction of the
Sprite. This is a very cool and efficient way of shifting objects
around, and this becomes even more slick when the objects move
in not just one direction but two. Obviously you have facilities at
your disposal in AMOS 3D to translate objects in three dimensions,
but a little vectoring wouldn't hurt sometimes for those really
special effects.
Here's another example for you to chew on. In this next case the
vector is flip flopped, that is to say it goes all the way in one
direction until it reaches the screen edge and then bounces back to
go in the opposite direction. Here's the listing:

Rem * Flip Flop.AMOS *
Rem
X=1 : DX=1

Curs Off : Flash Off : Cls O
Ink 4,4
Bar 0,0 To 15,15
Get Bob 1,0,0 To 16,16
Cls 0
Double Buffer
Do

Bob 1,x,1oo,1
Wait Vbl
X=X+DX
If X<=O or X>=319

DX=-DX

End If

Loop

The Bob is created as before, but this time a little bit bigger. The
Bob is only moved for simplicity's sake in the X dimension, from
left to right. Once it gets to the other side of the screen, it flip flops
around and reverses direction to go back the other way. The DX
vector is changed to a minus number, which of course reverses the

Maths Functions

movement and translates a left to right motion into a right to left
motion. Simple and very effective. A subtle and much more spirited
variation would be to make the X and the Y vectors flip flop on
impact, so you can bounce the Bob around the screen. A further
twist would be to make the vector of the bounce different when it
hits the wall so it bounces around a little bit more randomly. Many
thanks to Aaron Fothergill for his vector programs.

Bone Up Your Maths
One of the best sources for AMOS mathematical hints and tips,
algorithms and the like is the AMOS Club (see Chapter 23 for
details).

Mastering Amiga AMOS

ea
9:
Sprites
and
Bobs

In all computer games you see
on the Amiga, you will see lots
of Sprites and Bobs, the
characters on the screen
which glide around over the
backgrounds, shooting each
other or running around
mazes in pursuit of a wild few
hours away from it all. These
characters on the screen are
called sprites for a reason long
lost in the history of computer
programming.
At the back of my mind?!
vaguely recall something
about insects called water
sprites, and the way they skim
around on the surface of the
water. I imagine an Atari
programmer looking at these
things skimming about and
wondering if they were trying
to tell him something about
how aliens should move over
the surface of a background
without touching it. Until then
any characters on the screen
had obliterated and redrawn
the background behind them
as they went, because they
inhabited the same plane of
graphics.
Anyway even if this story
about water sprites is bogus, (I
kind of like the sound of it)
Sprites are now built in to the
hardware of any computer
capable of games, and are
usually called hardware
sprites. They are discreet
chunks of graphics that are
separate from the main
display, on a separate plane
you might say, so that they

Mastering Amiga AMOS

skim over the surface of the background without disturbing it. The
Amiga has eight hardware Sprites, and these are pretty much the
state of the art for 1985.
But when the Amiga was designed they also incorporated a facility
for what they called Blitter Objects or Bobs. These are better than
Sprites for a couple of important reasons.

1. Sprites are limited to eight per horizontal line on screen
2. Sprites can only have 15 colours.

Bobs on the other hand make use of the Blitter Chip in the Amiga,
capable of copying images to the screen at rates of a million pixels
per second. Bobs are just like Sprites, but instead of being limited
in any way they are unlimited. They can have as many colours and
resolutions as Amiga screens, and they can be as numerous as you
like as there are no limitations on number. Obviously the more
Bobs you have on screen the more stress you put the processor
under, but don't worry about that. Chances are you'll rarely push
AMOS that far with your programs. But bear in mind that Bobs are
slower than Sprites and use up more memory. This may be a
consideration no matter how small your program.
Sprites are limited in size, and their palette can only be the last 16
colours of a 32 colour display. So if the Sprite's palette takes some
of its colours from the first 16, those colours will change with
different backgrounds. Great care is needed in the creation of
Sprites.
As a rule of thumb use Bobs for slow moving, and big shapes and
use Sprites for fast moving small shapes, that's a fair division of
labour.

Don’t Get Confused
It's easy with all this talk of Sprites and Bobs to get a little tied up
in knots. When you see a character on the screen in a game, it's
always called a sprite, but this is a generic term, and not intended
to imply that the object is a Sprite or a Bob. Like hoovers and biros,
the word has a lower case first letter and means any moving object
on the screen. When I talk about specific routines etc, pay attention
to what we are actually talking about. I'll try to make it plain, but
you'll have to concentrate, that's your end of the deal.
One other thing, Sprites can be made to be bigger than the limit of
16 pixels, and that is by using what they call in AMOS computed
sprites. The computer automatically sticks Sprites together to make
bigger Sprites. You can only have up to 128 pixels in width, as there
are only eight hardware Sprites. (Tsk! Nothing but limitations!)

Sprites and Bobs

Creation of Sprites and Bobs
Making your own Sprites is very easy. You can grab a Sprite from an
IFF picture using the GET SPRITE command, (and some very good
special effects can be had this way) but by far the best method is to
use a Sprite designer like Sprite Editor.AMOS from your AMOS disks,
or better yet SpriteX. (See Chapter 10 for more details)
The Sprites can actually be designed and drawn in SpriteX or simply
grabbed from an IFF file. This is good because you might feel more
comfortable drawing in DPaint or something like that than you will
diving straight into a strange sprite engine.
Once the Sprite or Bob has been drawn and grabbed, it can be saved
into an ABK file on disk, and then loaded into AMOS programs for
use. Great care must be taken when you create the Sprites that you
use the right colours for the palette you will be using. To keep the
same palette in DPaint between two pictures, simply load in the
picture whose palette you want, clear the picture, and then draw
your sprites and save them. The palette will then be identical to
your picture. (Bear in mind also what I said about Sprites using the
second 16 colours in a 32 colour palette!)

Animation
It is possible to use animation without using AMAL, and with the
advances in AMOS, like for example the AMOS Compiler, such
routines needn't be slow. When compiled, the movements can be as
fast and smooth as AMAL, and in some cases depending on how
well you write and structure (optimise in other words) your code,
they can even be as fast without compilation.
Simple animation can be performed by changing the image in a Bob
or Sprite command quickly, like this:

Rem * Bob Animation.AMOS *
Rem
Load "Sprites.abk" : Rem Load your favourite sprite
file here

Main:
Bob 1,100,100,1
Wait Key
Bob 1,1oo,1oo,2
Wait Key
Bob 1,1oo,1oo,s

Mastering Amiga AMOS
 -

Wait Key
Bob 1,100,100,4
Wait Key

Goto Main

This case shows you that you can look at each frame in a Sprite and
create an animation from it. Each time you press a key the
animation advances a single frame, and although this is very nice,
animating is usually a bit faster than this. To animate the images
properly, you simply have to add a loop to the proceedings:

For A=1 To 10
Bob 1,100,100,A
Wait Vbl

Next A

The Wait Vbl smooths the animation by waiting for the next vertical
blank of the screen before flipping to the next image. You can
change the Wait Vbl to a Wait n with n=5 or something like that.
This slows down the animation to a sensible speed. The images are
flipped through from 1 to I0 (most animations are a little less
complex than that) and rapidly enough that the illusion of
movement is given. If you want to know how to do animation
itself... well, that's a more weighty subject and enough for a book in
itself. Get a book on animated film-making and employ the
techniques given there, or how about getting a copy of Disney
Software's The Animation Studio, which has a lot of very good
tutorial stuff on how to draw animation.
The key thing in animation is animating only when needed. Very
few Sprites will require animating all the time, and most only
animate when they move. If you require constant animation then I
suppose AMAL is the best idea, because it all works independently
from the AMOS code. This can be a drawback though in some cases,
especially when you need to pass information to and fro from
AMOS to AMAL, and if you're going to compile the program I'd say
avoid AMAL.

So try to animate on the move, meaning that for example if your
little man or whatever has to move to the left, then a Sprite showing
him walking to the left is useful. You don't have to draw all the
Sprite moves (especially if the Sprite looks the same from both
sides) as you can flip the Sprite from side to side by adding a
hexadecimal number $800 to the Sprite definition. So that's
creation and animation. What about moving about and bumping
into things?

Sprites and Bobs

Moving
Moving Sprites and Bobs about without AMAL is very simple. Sprites
can be whizzed around the screen anywhere you like, simply by
adjusting the x,y coords on the screen. These numbers can be
INCed and DECed and FOR NEXTed to any value you like, and
controlled by any external controller like the mouse or joystick, and
many other types of control as we'll see in Chapter 11 on controls
and movement. So try this:
Rem * Movit.AMOS *
Rem
Load "sprites.abk" : Rem don;t forget to load your
favourites
For Z=1 to 80

Bob 1,X,80,1
Next Z

So you just have to alter the coords on the screen, and this doesn't
have to be just a simple loop. You can adjust the point that a Bob is
traced onto the screen smoothly or jerkily, and these positions can
be drawn from anything, even the sound of the music playing in the
background, as with the VUBARS commands.

Collision Detection
Unless what you are doing with AMOS is not a game of any kind,
you'll want to detect collision. There's no point in having Sprites
whizzing around the screen unless you can tell when two or more
of them bang together, or when one shoots, that the others are
going to explode.
There are two facets to the detection of Sprite or Bob collisions,
first the BOBCOL, SPRITEBOBCOL, BOBSPRITECOL, or SPRITECOL
commands, which detect if any Sprites have collided. In other
words “has anyone hit anything?" Second you have to employ the
function COL() which tests to see which individual sprite sustained
the damage, or “who hit what?".
For example if your hero is Sprite 8 and the bad guys are Bobs 1, 2,
3 and 4, you would do something like this:

C=Spritebobcol(8,1 To 4)

returning a value of -1 if you've hit any of the mentioned Bobs, and
a 0 if you haven't. So obviously you have to have a test after the
command to test IF THEN -1 or 0 GOTO somewhere else.

Mastering Amiga AMOS

The first somewhere else you go to is to the COL() function, like so:

If Co1(3) Then Print "Crash"

or more appropriately GOTO the animation images for an explosion
and replace them inplace of the current Sprite. This is a program
which explains all that very simply:

Rem * Collision Detect.AMOS *
Rem
Screen Open O,320,200,16,Lowres
Curs Off : Flash Off : Hide : Cls O
Load “df0:sprite_600/aliens/alien1.abk"
Load "dfO:sprite_600/space/ship3.abk",1
Get Sprite Palette
Double Buffer
Bob 1,0,80,
Bob 2,a2o,ao,
Shared M
M=32O

Do
_ANIMSHIP
_MOVEALIEN

If Bob Col(1) Then _BOOM
Loop

Procedure _MOVEALIEN
M=M-5

Bob 2,M,80,1
End Proc

I Procedure _ANIMSHIP
For Y=18 To 21

Bob 1,,,Y

Sprites and Bobs
 _

Wait Vbl
Next Y

End Proc
I-

Procedure _BOOM
Boom
For X=35 To 43

Bob 1,o,ao,x
Wait 4

Next X
Pen 6 : Paper 0 : Centre "Bang! You're dead!"
Wait Key
End

End Proc

This program has a number of features worth looking into.
Obviously the Sprites are from the Sprite 600 set, available from
your AMOS disks or via one of the various AMOS PD outlets. These
are the same Sprites in the simple AMAL game I've described in the
AMAL chapters, in fact this is a sort of prototype of that idea. In
this example the spaceship meekly waits at the end of the screen,
and you can't move it at all. The alien ship comes from the right of
the screen, and when the ship is touched by the alien it explodes
beautifully.
All the image information for the explosions etc are in the Sprite
files, and like other examples which use the example Sprite files,
the Sprites are loaded one after the other into the same Sprite bank.
If you wanted to make this program a little bit easier to handle (and
cut out the wait for the Sprites to load from disk) you should load
them in direct mode and save them off with the program. Or to be
really kind you could load the Sprite files into the bank, merging
them by adding the positive number to the end of the filename, and
then save off the bank to disk as a new ABK file.
Once we have loaded the Sprites we've set up DOUBLE BUFFER to
prevent any flickering of the Sprites, and GET SPRITE PALETTE will
make sure our Sprites are the same colours as they should be. In
this case the Sprites are from the same set so they are all the same
colours. If your Sprites are of different palettes, you may have to
re~edit them and alter the palettes to fit.

Mastering Amiga AMOS

Next we set up the initial positions of the Bobs, and then define a
variable as shared for the position of the Bob in the proc called
_MOVEALIEN. The reason this is shared is that the proc is called
each time the Bob is moved, and so the variable has to be defined
outside the Proc. If the variable isn't shared, then it is always 0, as
it never gets defined, according to the Proc. In this case this means
that the Sprite would suddenly turn up in the same position as the
ship and explode the ship right away, rather than travelling gently
across the screen.
So we're all set. The main loop of the program is the DO LOOP,
which will go on forever until the <Ctrl-C> combo is pressed. The
loop runs through the main parts of the program, calling procs and
then looping back to the start again. Each time it calls the
_MOVALlEN proc the alien moves to the left. (I've put an underscore
character at the beginning of the proc names so I can then use any
words I like, rather than sticking to proc names which aren't
commands or reserved words!) Each time the __ANIMSHIP proc is
called the ship's tailflame animates. And at the bottom of the proc
we have the collision detect routine which will trigger the Proc
called _BOOM when the alien makes contact with the ship.
The ,__BOOM proc makes a BOOM noise and then animates the
explosion sequence from the sprite bank. This won't work if the
Sprites are any others than the ones specified, as they have specific
images in the bank which do certain jobs.
The sprite movement is a little jerky, even with double buffering.
But you can spruce this up a little with careful organisation. For
example, only animating things that need animating is a good one.
The old Paul Daniels’ ploy is a good one too, that is to say
distraction. If your Sprite moves fast and all over the place, nobody
is going to notice how jerky it is are they? This works well with
scrolling screens too, if something is going on over the screen then
it won't be quite so obvious. Planning is everything, but obviously
all these problems vanish to a certain extent when you compile a
program.
Another method is to make sure that if something which has a
constant animation is moving, try shutting down any loops which
could slow it down. Set a variable to toggle on and off when certain
processes are going along, and then you can simply check what's
operating and if you have more than a certain number you can
close a few down. It's a complex way of doing it but it works.
The way you toggle a variable between two values is like so:

S=2
Do

Print S

Sprites and Bobs
 |

S=12-S

Loop

This toggles a variable called S between 2 and 10, by making it
equal to 12 minus whatever it is at the time. As it is equal to 2 one
time and 10 the next, it flip-flops back and forth between 10 and 2.
C]ever,eh?

Sprite Viewing
One of the hardest things to do when working with Sprites,
especially other people's, is to know what image in the bank does
what. If you think about it though, it's remarkably easy to fix up a
simple program to look into a bank for you and show you
interactively what is there. To check the vital statistics of your
Sprite banks, let this program do all the work:

Rem * Sprite Bank Viewer.AMOS *
Rem
F$=Fse1$("*.abk“,““,"Load sprite bank","to show on
screen")
If F$="" Then End

Load F$
Flash Off : Curs Off : Get Sprite Palette
N_SP=Length(1)
For N=1 To N_SP-1

A=Sprite Base(N)
If A

Clw

Bob 1,1oo,1oo,u
Print "Sprite number";N
Print "Size in X:";Deek(A)*16
Print "Size in Y:";Deek(A+2)
Print "Number of bitplanes:";Deek(A+4)
Print "Position of hot spot in X:";Deek(A+6)
Print ' " " Y:';Deek(A+8)

End If
Wait Key

Next

Mastering Amiga AMOS

Each time you press a key, after loading the Sprite file in question,
the file will flip to the next image and give you a read-out of the
Sprite image and its important statistics like length, width, image
number and so forth. As a project for you, try creating a variation
on this program which has a two way flipping effect, so you can go
back and forth through the Sprites.

Bullets
A sort of sub-skill in producing games is that of releasing, tracking
and colliding with bullets and even multiple bullets. This is a mega
problem but with a little bit of clever maths, it can be solved with
the minimum of fuss.
This routine was originally created by Aaron Fothergill of the AMOS
club, and I'm printing it here as it's one of the best and most
concise routines of this type that I've seen:

Rem * Multi-bullet.AMOS *
Rem
Dim BX(10),BY(10),BDY(10),BS(10)
Curs Off : Flash Off : Cls O : Paper O : Pen 1 : Ink 2,2
Bar 0,0 To 7,15 : Hide On
Get Bob 1,0,0 To 16,16 : Hot Spot 1,4,0
For A=O To 9 : Cls 0 : Locate 0,0 : Pen A+2 : Print "*"
Get Bob 2+A,0,0 To 16,8 : Hot Spot 2+A,4,4 : Next A
X=16O : Y=18O

Cls O : Double Buffer : Colour 2,$FFF : Colour 1,$FFO
Fade
1,$O,$FFF,$FO0,$FO,$F,$FFO,$FF,$FOF,$F80,$8FO,$F8,$8F,$8O
F,$FO8
While Mouse Key<2

Bob 1,X,Y,1
If NB>O Then Gosub BULLETS
GTG=1-GTG : X=X Screen(X Mouse)
If Mouse Key=1 Then Gosub FREBULLET

Wend : End

BULLETS:

Sprites and Bobs

For A=O To NB-1
Bob 2+A,BX(A),BY(A),2+BS(A)
BX(A)=BX(A)+1 = BY(A)=BY(A)+BDY(A)
If GTG=O Then BDY(A)=Min(A,BDY(A)+1)

Next A

NB2=NB

For A=NB-1 To O Step -1
If BY(A)>199 or BX(A)<O or BX(A)>319

Bob Off 1+NB2
Swap BX(A),BX(NB2-1) : Swap BY(A),BY(NB2-1)
Swap BDY(A),BDY(NB2-1) : Swap BS(A),BS(NB2-1)
Dec NB2

End If
Next A

Return

FREBULLET:
If NB<1O

BX(NB)=X : BY(NB)=Y
BS(NB)=Rnd(9)
BDY(NB)=Rnd(2)-12
Inc NB

End If

Return

The beauty of this routine is that it doesn't waste time on bullets
which are no longer moving, and sorts the remaining bullets so that
they are more efficient. Fiendish.
As well as anything else, the program first creates the Bobs we'll be
using, and in this case it's a sort of firework which moves left and
right in tune with yourmouse movements. If you press the mouse
button, the sparks shoot out of the end of the firework. The bullets
and their motions are stored in arrays, and when the mouse button
is pressed, the fire routine is actioned and a number of bullets
come flying out of the top and curve upwards under the influence

Mastering Amiga AMOS
M

of gravity. Study the BULLET and FREBULLET procs and how they
work. Use the SWAP command to sift the bullets into the right order
depending on their status.

For Your Information
The mouse pointer in AMOS is a Sprite, and so is the AMOS logo at
the top of the screen in the editor. These are all stored in a special
bank called Mouse.abk on your AMOS disks. In this special bank
Sprite 1 is the normal mouse pointer, Sprite 2 is the crosshairs,
Sprite 3 the clock and Sprite 4 the AMOS logo. You can load and edit
these Sprites but you must keep the same resolution and amount of
colours or AMOS will crash. The cursors are all 2 bitplanes (4
colours) Hires, and the AMOS logo is 4 bitplanes (16 colours). Keep
to these boundaries and you can create your very own pointer set.

sea
1 O:
SpriteX

In order to make your games
programs truly original you
have to start designing your
own Sprites and Bobs.
Although this sounds like a
chore, it needn't be. Either you
draw a shape on screen or
load an IFF file and grab an
area of the screen as a Sprite,
or you use the AMOS Sprite
Editor program on your AMOS
disks. This program was until
a short while ago the only
convenient way to produce
movable objects for your
screens. But the author of the
AMOS Sprite Editor, Aaron
Fothergill of Shadow Software,
decided to upgrade the
program and make it more
powerful. To be honest the
original program had some
annoying bugs, and being a bit
of a perfectionist, Aaron
wanted to do a proper job on
the program. So SpriteX was
born and anyone seflous
enough about AMOS to want to
write their own games really
ought to have a copy.

Right Tool for the
Right Job
SpriteX is a modified version
of the original AMOS Sprite
Editor, with many more
features, and greater amounts
of what the Americans would
call functionality. The main
screen looks similar, but you'll
find more functions. Whereas

Mastering Amiga AMOS

the original Sprite Editor was limited as to the type of objects it
could create, the SpriteX editor is designed for drawing AMOS Bobs,
Sprites and even Icons.
Any images designed in SpriteX are stored in a bank, ready to be
saved to disk and used as Sprites, Bobs or Icons by AMOS. To use
them as Icons, you use the SWAP button on the top line of buttons
to swap them into the Icon bank, and then hit the SAVE as ICONS
button. See Figure 10.1 for a look at the SpriteX screen.
The editor is very easy to use, and borrows much of its look and
feel from Amiga paint programs. For example two buttons at the
top left of the screen allow you to cut out an area from the zoomed
sprite, and then paste it elsewhere in the sprite. When Cut is
selected, you click on the zoomed area and drag the cut area to
size. The program will then use this cut area as a brush. Clicking on
Paste will allow you to go back to using this brush while you are in
the editor.

| Size 31:32 '1': 32 Lu-u |
Figure 10.1. SpriteX 1.32.

At the bottom of thescreen are tools to help you move Sprites to
and from the Sprite bank, and a number of other tools for
manipulating banks.

SpriteX
—

RGB
This button allows you to change the values of the colours being
used in the bank, that is to say the palette of the Sprites, Bobs or
Icons you are creating.

Insert Sprite, Put Sprite, Get Sprite, Delete Sprite
These buttons put Sprites in and out of the bank, and erase ones
you don't want any more.

Erase Bank
Of course this deletes the bank in memory ready for you to get
another one from disk or create one from scratch.
As well as being able to draw your Sprites from scratch, you can
also grab them from an IFF file, like you would to grab an exciting
graphic font for use in CText. To do this you use the extra module
called GrabberX.

New Features
A lot of modifications have been made for version 1.23. Load and
Save are now on buttons on screen as well as the L and S keys on
the keyboard. The 1.23 version can handle Sprite colours as well as
Bob colours. Grabber is now built in and is a separate but
integrated grabber module. An Animation checker is also included.
SpriteX can now hold both a Bob/Sprite bank, as well as an Icon
bank in memory and swap between them. A Rotator utility has been
added, so that you can rotate images to an accuracy of a tenth of a
degree (more about that in a sec). Generally speaking several of the
existing functions have been tuned. There is an Auto Scrunch
facility which automatically scrunches Bobs when got from the bank
which saves time when working on Bobs grabbed from IFF screens.

New Buttons
Load Spritellcon bank
This is the same as the L key on the keyboard. It loads Sprites into
bank 1, or Icons into bank 2. To edit Icons, swap them into bank 1
with the SWAP button.

Save Sprite Bank
This saves bank 1 to disk, the same as the S key.

Append Spritellcon bank
Loads a new bank and adds it to the current one.

Mastering Amiga AMOS

Sprite Grabber
This is the same as the old Sprite grabber program. It allows you to
grab Sprites from IFF pictures with ease.

Swap lconslSprite banks
This function swaps banks 1 and 2 about, so that you can edit one
or the other.

Save Icon Bank
As with Save Sprite bank, but it saves bank 2 (Icons).

Sprite/Bob Palette
Swaps between the normal Bob/screen palette, and the special
Sprite palette.

Animator
Allows you to test animations of your Sprites, back and forth and
one frame at a time.

Niceness Mods
In SpriteX the NICE button was the internal preferences of SpriteX.
The Niceness option has been slightly modified in the current
version, with a new function added. The Free memory display now
only shows the amount of CHIP memory, as of course this is the
only relevant memory for Bobs, Icons and Sprites.
The new button in the NICE menu is the Auto Squash option. When
switched on, any Bob got from the bank so that you can edit it, is
automatically squashed to the top left, and the size of the Bob
automatically reduced. This saves you having to use the squash
button on every one of the 128 Sprites you grabbed from your IFF
picture.

There is another option to do this job, and that is pressing the Z
key when editing, so that SpriteX will go through the whole bank,
and squash every Bob for you.

The Rotator
The Rotate Button has now been split into two. The lefthand side
will rotate the image by 90 degrees, and the righthand side
accesses the Rotator, a powerful utility for rotating images. In the
Rotator there are three option buttons, as well as Cancel and OK.
Here they are:

Number of Rotations
This can be set from I-64.

SpriteX
_

Rotation Angle
This is set in degrees, and can be from 0 to 360.

In 360
This button will take the number of rotations you want, and work
out the angle required for that number of rotations in 360 degrees.
For instance, you could have the number of rotations set at 16, and
press the In 360 button. The Rotator will then work out that each
rotation needs to be 22.5 degrees, and set the rotation angle
accordingly. When you press the OK button, the Rotator will
calculate all the rotations you will need, and insert them all into the
Sprite bank.
It isn't as fast or accurate as the rotation routines in some art
packages, but it does just about everything for you. Even the
hotspot of the image is rotated to the correct point!

C’mere, There’s More
A few other features have been added to make life easier. All
functions which move the image, such as Horizontal/Vertical Flip,
Rotate (Including the Rotator) and Squash, will automatically adjust
the hot spot.
You need to hold the right button down over the Sprite display
buttons to be able to view them. Also, when scrolling through the
Sprites with the left button, holding down the right button as well
(hold the left first then click with the right), will let you scroll
through 10 sprites at a time. The two colour Hires mode has been
replaced by four colour Lores (for working on mouse pointers). The
Alert boxes have been replaced with better ones from AMOS TOME.

How Does That Grabber You?
The Grabber in SpriteX is a development of the original Sprite
Grabber, first supplied as a separate program to the main SpriteX,
now used as part of the main program. Grabber has had a few
modifications, and now has an extra function called Line Grab.
For those of you who haven't used the Sprite Grabber before,
GrabberX is for grabbing images from IFF or AMOS style spacked
pictures to be used as Bobs or Icons. This is done by loading in the
picture, clicking on the scissors or cut button, and then marking the
area to cut. For most images, it is best to mark an area larger than
the area you want, and then optimise it in the main menu, to chop
out the unwanted space. For some images, like those that are too
large to be edited for instance, you can use the arrow keys to fine
tune the grabbing area.

Mastering Amiga AMOS

If you press the up/down arrow keys, you can control the icon bar
up and down the screen so that you can view and grab different and
larger areas. Clicking on the Cut icon will grab a single image and
store it in the Sprite bank at the current location, which is changed
by the arrow buttons. Clicking on the Cut Line icon will allow you
to grab a whole row of images in one go. This is especially useful
when using SpriteX in conjunction with CText, as you can grab most
of an alphabet on one line. The only rule with this function is that
the images must have at least a one pixel gap between them. You
simply move the box over the area you want to grab and GrabberX
will grab the whole area and split it horizontally into separate
images.

Animation Station
Finally, you have a means to test Sprite animations using the ANIMX
module. The ANIMX animation tester is designed to enable you to
test out your Bobs to make sure that they are animating properly.
You can animate up to 16 Bobs over 51 frames. To use ANIMX, you
control the Frame Number, Bob Number and image number for each
Bob with the three controllers at the top of the screen. The Button
at the bottom left allows you to load in a background screen to
animate the Bobs over, and there are four more control buttons,
Wipe, INS and some arrow buttons:

Wipe
Clears all the animation, so you can restart.

INS
Inserts a gap in the animation, so that you can insert a frame.

->
<-

A sort of ping pong effect plays the animation to the last frame, and
then plays it backwards to the first.

->
Plays the animation to the last frame, and then jumps back to the
first. Clicking on either the Ping Pong or Play buttons will also stop
the animation.
As with GrabberX, the control bar can be moved up and down with
the cursor keys.

SpriteX
—

Sprite Xtras
On the SpriteX 1.32 disk as well as the world's best AMOS Sprite,
Bob and Icon creator, as a bonus are the Rem Maker.AMOS program
(to design fancy REM statements to introduce your program), and a
pair of 10 Liner games, Logger Larry and Ping. Why 10 Liners? Well
they‘re only 10 lines of code, that’s why. These 10 Liners crop up
quite a lot in the AMOS Club newsletter, and apart from being
excellent examples of how to code a game in a concise and clever
way, they are great sources of info on how to get the very best
games from the minimum of code.
Full details about how to get a copy of SpriteX appear at the end of
this chapter. But what’s this I hear about a new version coming
along soon?

SpriteX 2.0
Coming soon to an AMOS based Amiga system near you, available
as an upgrade from the AMOS Club, comes SpriteX 2.0. It’s not quite
available yet at the time of going to press, but Aaron has been nice
enough to give me a sneak preview. Figure 21.2 shows the new
screen.
The program is an upgrade, with many new features worthy of note.
The program can now edit Bobs, Sprites, AMOS Icons, Workbench
Icons and Screens. That’s right, you can now create Icons for
programs as well as the AMOS kind of Icons for game backgrounds.
And anything up to a full screen can be used and edited, so you can
grab Bobs from a full screen or have a full screen as your Bob!
There are now almost twice as many editing options as there were
with the original version l’ve talked about in this chapter, version
1.32 or thereabouts.
The animation test feature has been expanded to be a full
animation page (which may also be an AMAL editor) including path
generation for your Sprites along sine or circular waves. (Nice touch
that.)
The new version of the Grabber is artificially intelligent, that is to
say you can set it going grabbing a screen full of small Sprites while
you go off and make a cup of tea. When you come back it’s all done
and all you have to do is save to disk. The algorithms used are very
advanced, and Aaron is quite rightly very proud of them. Fractals
come into it somehow, I don’t know how it works though. (Join the
AMOS Club and they’ll doubtless explain it to you.) The Grabber
also automagically cuts out any guide spots you used on your
images, and fixes a hotspot on the Sprite. In other words “Basically
you can go from screen to game without editing anything",
according to Shadow Software.

Mastering Amiga AMOS

I Finally there is a new image arrangement page where you can
shuffle and swap all the images in the 11 banks that SpriteX 2 can
hold in memory at once.

wens Ila 3- "5, E11 -=1
1 D§5lGPiFHM.+|Li|| :1 |@||"||3]'¥|i I|| I | I l | I l

I I \-‘|"_|
I '.*:- _-

::'=.a-.-.--"._. .__,.:'lI-_ _J_l|_l|I ;

-E

T~i'i‘\."\‘i-iiI-

Ffgure 10.2. An early demo of SpriteX 2.0.

Gotcha!
The original SpriteX 1.32 program is licenseware, and available for
very little dosh from Deja Vu Professional Licensed Software.
SpriteX 2.0 is available as a £10 upgrade from the AMOS Club, and
is only available to club members.

ée
11:
Object
Movement

Once you’ve got the hang of
Sprite moves, you'll doubtless
want to start interacting with
these Sprites. How do you
move them, and with what? If
you’ve had your Amiga for
longer than about 10 minutes
you’ll be used to having a
joystick in one port and a
mouse in the other, so these
are obviously the first choices
of input devices. Then there’s
the keyboard, perfect for
Tetris type games, or an
option for those people who
hate joysticks. (They do exist,
I assure you. Ex-PC owners
mostly!)

Moving Experience
You interact with AMOS
programs using the keyboard,
mouse and joystick, and
although the keyboard is easy
(if you know BASIC), getting
the computer to understand
what you want using the
mouse and keyboard are
harder to master. Until now
thatis.
HIDE is the first command
that springs to mind, and this
is a fairly simple mouse
control command which has
nothing to do with object
movement but as we’ll see in a
sec has something to offer the
programmer of mouse moves.
This command hides the
mouse pointer, and the
reasons you would want to do
this are manifold. Mostly it’s
to free the screen for a really
good picture and not allow the
user the distraction of
wanting to click on something.

Mastering Amiga AMOS

If the mouse pointer is not being used, but instead you’re using a
character which is in fact a Sprite (like a digitised picture of a
human hand, for example) then obviously you won’t want the old
pointer still on screen, will you?
So HIDE sends the pointer away. To get it back just do a SHOW
command, so a typical structure would go like this:

Screen Open 0,640,256,4,Hires
Load Iff "load a hires picture here"
Hide
Centre "<It's gone!>"
Wait Key
Show

Centre "<It's back!>"
Wait Key

It’s handy to be able to hide the mouse pointer on main title
pictures, and draw in a Press Any Key prompt on the picture to
make people trigger the Wait Key command to carry on. And clearly
if the method of control is something other than the mouse, like
the joystick, you don’t want to have the mouse pointer hanging
about clogging up the screen.
Another useful mouse command is CHANGE MOUSE. This allows
you to alter the shape of the mouse pointer to another preset
design or even one of your own. You can do this in your system-
configuration and load this onto your RAMOS disk, but there is an
elegant way to do this from within AMOS. The way you use CHANGE
MOUSE is like so:

Change Mouse 1

where the 1 could be any number from 1-3. The preset pointer
shapes are.

1. for a normal pointer
2. for a crosshair
3. for a mouse clock

And if you choose a 4, then the mouse pointer will be taken from
your Sprite bank. lt’s not that simple though, as the Sprite number
is derived by subtracting 3 from the number given. So for example:

Change Mouse 4

Object Movement

gives you Sprite 1 of the current bank, and:

Change Mouse 5

gives you Sprite 2, and so on and so forth. This means you can have
your Sprite attached to the mouse, without having to hide the
pointer, because in this case the pointer is a Sprite.
AMOS is really good at simplifying the reading of hardware, and
this is because it’s been thought up long after all the old world
BASIC commands have been tried and tested and been found
wanting.
For example for reading if a mouse button has been pressed, you
just use either the MOUSE KEY or MOUSE CLICK commands. To set
or read the position of the mouse pointer on screen you use the
much more simple X MOUSE or Y MOUSE instructions. (Much more
simple than BASIC Ordinaire, that is.) And finally you can limit the
mouse to certain areas of the screen with the LIMIT MOUSE
command. This program shows you roughly what l’m talking about:

Rem * Mousing around.AMOS *
Rem
Print "Mouse pointer on"
Wait Key
Hide
Cls
Print "Mouse pointer off“ !
Wait Key
Show
Cls
Change Mouse 3
Print "Mouse back again, but altered“
Print "Move mouse and press button"
Cls
Proc _CHECKMOUSE
End

Procedure _CHECKMOUSE
D0

Mastering Amiga AMOS

Home
X1=X Mouse : Y1=Y Mouse
Print "Mouse location = ";X1,Y1
K=Mouse Key
If K=0 Then K$="None“
If K=1 Then K$="Left"

If K=2 Then K$="Right"
Print "Mouse key pressed = ";K$

Loop

End Proc

Obviously once you have the mouse being read from the AMOS
program, you can just as easily pass the information from the
mouse to a Sprite and relate its moves to those of the mouse:

Rem * Mouse follow.AMOS *
Rem
Screen Open 0,320,256,32,Lowres
Flash Off : Hide : Cls 0
Load "df3:sprite_600/space/ship3.abk"
Get Sprite Palette
Double Buffer
D0

X1=X Mouse : Y1=Y Mouse

Bob 1,X1-150,Y1-50,1
Loop

This example shows you how this is done. (Obviously you could
simply change the mouse pointer, but this is how to control a Bob
with the mouse!) The X MOUSE and Y MOUSE values are stray by
about 150 in the x dimension and about 50in the y direction due to
a little difference of opinion between hardware and screen
coordinates, but I'll look at that in a moment. LIMIT MOUSE suffers
from a similar problem, but here's what it looks like:

Rem * Mouse Limit.AMOS *
Rem
Curs Off : Cls 0

Object Movement

Ink 7
Bar 0,0 To 319,150
Ink 2
Box 0,0 To 319,150
Box 100,100 To 200,50
Pen 0 : Paper 7
Locate 0,1
Centre “* LEFT button mouse limit *"
Locate 0,3
Centre "* RIGHT button no limits *"
D0

If Mouse Key=1
Limit Mouse X Hard(0,100),Y Hard(0,100) To X
Hard(0,200),Y Hard(0,50)
X Mouse=X Hard(0,150) : Y Mouse=Y Hard(0,70)

End If
If Mouse Key=2 Then Limit Mouse

Loop

Notice the use of X HARD and Y HARD to get the head of the mouse
pointer limited to the right spot on screen. I'll explain why this is in
arnonunn.
The mouse can’t move outside the confines of an invisible box on
the screen, which is good for the kind of game where an attack
wave is coming onto the screen from the righthand side and you
might smack into a few Bobs as they appear. If you can't reach that
side of the screen your player will be safe, until they start shooting
at least.
One thing to bear in mind with mouse control is the difference
between hardware coordinates and screen coordinates. The X
MOUSE and Y MOUSE commands return a hardware coord so you
have to convert that to a screen coord for the position to be right.
Same with LIMIT MOUSE. In order for the coords from X and Y
MOUSE to be correct you have to convert them using X and Y
SCREEN.
Mouse moves are easy to follow and even control, as in this final
mouse example, which takes the form of a famous toy. (How I miss
MD

Mastering Amiga AMOS

Hem * Retch-As-Ketch.AMOS *
Rem
Curs Off : Cls O
Paper 0
Pen 3 : Centre “R e t c h - A s - K e t c h"
Locate ,4 : Pen 4 : Centre “Press 's' key to save a pic-
ture"
Locate ,6 : Pen 2 : Centre "Right mouse to clear screen"
Locate ,24 : Pen 1 : Centre "Press a key to start"
Wait Key : Cls 0
Y Mouse=X Screen(160) : X Mouse=Y Screen(100)
D0

X=X Mouse : Y=Y Mouse
M=Mouse Key
I$=Inkey$
If M=1 Then Plot X Screen(O,X),Y Screen(O,Y),2
If M=2 Then Cls O
If I$="s" Then SAVIT

Loop

Procedure SAVIT
F$=Fse1$("*.IFF","","Save your picture")
Save Iff F$

End Proc

Press the s key on its own to save your doodles to disk, and press
the right mouse button to erase your etches from the screen. Okay
so it isn’t DPaint, but it's fun, and it only takes about 10 minutes to
type in. Notice carefully the use of X SCREEN and Y SCREEN here to
convert the X and Y MOUSE functions from hardware coords to
screen coords. This is the best way to do it.

Deep Joy
And so we move on to the joystick, which is read in a similar no
nonsense way. Obviously the main difference between the joystick
and the mouse is that the mouse has a coordinate on the screen,

Object Movement
 |

whereas the joystick only has eight directions and a fire button.
There are ways of reading the stick in AMAL, and even Autotest, but
we'll get into that in Chapters 12 and 13. For now let's concentrate
on the ways of reading joysticks through AMOS itself.
The Joy command returns a figure telling you what state the ~
joystick is in. Take a look at this segment of code:

Do
Bob 1,X1,Y1,I
J=Joy(1) and 15 = Add X1,X(J),1O To so = Add
Y1,Y(J),1O To 20
Exit If Joy(1)>15

Loop
just look at this, but don't type it in because it won't work.
Although this example requires that you set up DIM statements etc,
you can read joystick port 1 and pass the information to a Sprite (or
in this case a Bob) move command to shift the thing around the
screen.
As well as using the comprehensive Joy command, you can look
specifically at each direction one at a time with the jup, Jdown, jleft
and Jright commands, along with Fire to check the mouse button.
Try this example which will give you the idea:

Rem * Joystick Tester *
Rem |
DO

If Jleft(1) Then Print "Left" '
If Jright(1) Then Print "Right"
If Jup(1) Then Print "Up"
If Jdown(1) Then Print "Down"

If Fire(1) Then Print "==FIRE!=="
Loop

Obviously the action taken on trapping the joystick can range from
simply passing information to a program (like change a page of
information) or it can action some animation for a certain Sprite on
the screen. Direction is important to animation as we've heard from
the Sprite creation chapter, but here's how it's done in AMOS:

Mastering Amiga AMOS

Rem * Directional Joystick.AMOS *
Rem
Flash Off : Hide : Curs Off : Cls O
Load "df0:sprite_600/vehicle/superbik.abk"
Ink 2

Polygon 100,75 To 200,75 To 319,200 To 0,200 To 100,75
Ink 1
Polygon 150,75 To 155,75 To 159,100 To 155,100
Polygon 156,110 To 164,150 To 170,150 To 159,110
Polygon 174,159 To 185,200 To 176,200 To 170,159
Locate ,3
Paper 0
Centre "Use the joystick to lean the bike!"
Double Buffer
Get Sprite Palette
X1=100 : Y1=100 : I=11

Bob 1,X1,Y1,I
D0

If

If

If

If
If

Jleft(1) Then Dec I
I<1 Then I=1

Jright(1) Then Inc I
I>2O Then I=20
I>11 Then A=25

If I<=11 Then A=O

Bob 1,X1+A,Y1,I
Wait Vbl

Loop

The Sprite we're using is the SuperBike from the Sprite 600 set. It
has a series of images of a bike leaning over from the left to the
right, with the central image of the bike upright being image 11.
The main loop of the program checks the joystick's left and right
sensors to see if the stick is pressing in those directions. If it's
pushing left it decrements (subtracts) 1 from the image number,
giving you the next image down, which makes the bike appear to

Object Movement
 ,

lean to the left. The reverse happens if the joystick is being pushed
to the right. The image number I is incremented (added to) by I, and
the next images show the bike leaning to the right.
The short tests to see if I is equal to 11 are to shift the image on
screen by 25 pixels in the X dimension between images 11 and 12.
The wheels of the Sprite flick from one side of the screen to the
other if you don't make sure they stay put. Testing to see which
image you are using enables you to add the amount of pixels
difference (stored in A) to the X coord of the Sprite, meaning that it
will always seem to be on the right spot and not jump.
The Sprite image changes whichever way the joystick is moving,
and this improves the reality of the Sprite's movement. Obviously
you can incorporate various other routines to improve the
animation, like making a little puff of grit when the bike leans a lot,
making it lean further the faster you go, and even let the bike slide
a little across the road when you go around corners. It's all done
with Bob image changes and a bit of intelligent programming. It's
all a matter of what happens when, as with all programs.
Obviously joystick control needn't be passed simply to a Sprite.
You could pass the joystick movements to the mouse pointer, and
ask someone to move the mouse. When they think they've got the
hang of it, you can divert them with the joystick. (A silly joke, but I
got a kick out of it). Or perhaps this is more your line:

Rem * Joystick Screen Move.AMOS *
Rem
Screen Open 1,320,256,32,Lowres
Flash Off : Curs Off : Hide : Cls
Load Iff “df0:iff/amospic.iff",1
Screen Display 1,X Hard(0,0),Y Hard(0,0),320,256
X=0 : Y=O

Screen Copy 0,0,0,319,100 To O,639,0
D0

If Joy(1)=%1OO Then x=x-6
If Joy(1)=%1000 Then x=x+o
Screen Offset 1,X,O : Wait Vbl

Loop

Mastering Amiga AMOS

The picture in the program is of course our old friend AMOSPIC.IFF,
but it could really be any lowres picture. Once the program is run
you can move the joystick to the right, and hold it there. A number
of copies of the screen roll by, and when you push the joystick the
other way the screen scrolls back. If you scroll back to beyond the
first screen you'll discover that we haven't made provision for a
leftwards scroll, although it would be a simple matter of copying
the screen to the left of the current screen as well as the right, in
the SCREEN COPY routine.

Keyboard Controls
There comes a time in every programmer's life when he wants to
write something which has more controls than the simple up, down,
left, right and fire that a joystick can offer. Flight simulators are a
good example of this, and although that is a slightly complex
example, it serves the purpose. Flight simulators usually have a
number of controls, obviously a joystick is a good start, but for
things like setting your flaps, throttling the engine, launching
rockets etc, this is a task that requires a few more control keys.
This is where the keyboard comes in.
The simplest method for controlling things using the keyboard is to
examine individual keys and check if they are equivalent to certain
ASCII characters. ASCII is a standard code for computers where
every key on the keyboard has a number, and although these
numbers are usually only used internally for the computer to
identify certain characters, the codes do have uses in computer
programs.
Commonly the computer language you use has a sort of translation
of the codes built in, so you can do a:

If A="Y" Then _GOFORIT
kind of thing. This means that if a key you have pressed is in fact
the capital Y key, the Proc called _GOFORlT is actioned. To grab the
key in the first place you have a few options, the simplest of which
is the INKEYS statement:

Do

X$=Inkey$: If X$<>"" Then Print XS
Loop

INKEYS waits in the background until a key is pressed, and then
when it is, the value of that key is stored in the variable you assign
it to. Testing that variable allows you to check which key it was that
was pressed. To check the ASCII codes of keys you can test them

Object Movement
 .

with the ASC and CHR$() functions. ASC generates the ASCII code of
a character and CHR$() converts that code into a character on the
screen.
A more sophisticated function is the SCANCODE keyword, which
allows you to check for keys which don't actually print on the
screen, like Help, Del or the function keys. This means that all the
keys on the keyboard can be trapped and used as control keys for
your program. This short program gives you the basic idea:

Rem * Scancode.AMOS *
Rem
Screen Open O,640,256,16,Hires
Hide : Paper 0 : Cls 0
D0

While KEE$=""

KEE$=Inkey$
Wend
If Asc(KEE$)=0 Then Print "**Specia1 Keyl**"
Print "Scancode for key is";Scancode
KEE$=""

Loop

The function keys can also be accessed with this command, and
this can be handy for utility programs, and even creating keyboard
short-cuts from menus.

Put it All Together
Finally you piece all this together into a game idea, and to
demonstrate this we need some sprite files (you can use those on
the Sprite 600 disk or create your own), a title screen, a music file
in tracker module format, and some sound samples. We've put this
on the support disks as Blaster.AMOS to show you how it all works,
but here's the listing.

Rem * Blaster.AMOS *
Rem
Hide : Curs Off : Flash Off
Unpack 6 To O
Dim ALIEN(5)

Mastering Amiga AMOS

For I=1 To 5 : Sam Play 15,1,20000 : Wait 5 : Next I
| Wait 25

Track Loop On
Track Play 3
Repeat

. Until Joy(1)
Track Stop

I Flash Off
Screen Open 1,320,200,16,Lowres
Double Buffer
Get Sprite Palette
SCORE=0

l NEWGAME:

Cls 0
LIVES=3 : BUG$=5 : SX=50 : SY=100 : AX=320 : AY=30

MISSFLAG=O : SHIPFLAG=0 : ALIENFLAG=0

Curs Off
I Cls 0
' Locate 15,10 : Paper O : Print "Score: ";SCORE

Wait 100

Cls O
Ink 15
For Z=1 To 50

Plot Rnd(320),Rnd(200)
' Next Z

For Z=1 To 5
ALIEN(Z)=O

Next Z

Repeat
If Jleft(1) and SX>30 Then SX=SX-2
If Jright(1) and SX<32O Then SX=SX+2

If Jup(1) and SY>O Then SY=SY-2
If Jdown(1) and SY<199 Then SY=SY+2

Bob
If SHIPFLAG=1 Then Bob Off 1 : SX=5O : SY=10O
Wait Vbl
For

Bob J+2,AX,AY+SPACE,3
SKIP:
SPACE=SPACE+3O

I

Next J

AX=AX-2

Object Movement

1,SX,SY,1

J=1 To 5
If ALIEN(J)=1 Then Goto SKIP

If SPACE>12O Then SPACE=O

If AX=-30 Then ALIENFLAG=O

If AX=-30 Then SHIPFLAG=O

If AX=-30 Then AX=320

If
FLAG=1

If
MX>SX+

If
_BOOM

If
ABOOM

Until
Wait 2
Sam Pl
Wait 5
Sam Pl
Wait 1
For Z=

Bob
Next Z

Fire(1) and MISSFLAG=O Then Sam Play 1 : MISS-
: Bob 2,SX,SY,2 : MX=SX : MY=SY

MISSFLAG=1 Then Add MX,5 : Bob 2,MX,MY,2 : If
100 Then Bob Off 2 : MISSFLAG=O
Bob Col(1,3 To 7) and SHIPFLAG=0 Then Gosub

Bob Col(2,3 To 7) and ALIENFLAG=0 Then Gosub

LIVES=O or BUGS=0

5
ay 3
O
ay 15,1,1500
O0
1 To 7
Off Z

Mastering Amiga AMOS

Goto NEWGAME

_BOOM:

| Boom
SHIPFLAG=1

Bob 1,SX,SY,4
Wait 10
LIVES=LIVES-1
Return

- _ABOOM:
F Sam Play 2

ALIENFLAG=1

Bob Off 2
D=O
For A=3 To 7

If Co1(A) Then D=A
Next A

If o=o Then _OFFSET=0
If D=4 Then _0FFSET=3O
If D=5 Then _OFFSET=6O
If D=6 Then _0FFSET=9O
If D=7 Then _OFFSET=120
Bob D,AX,AY+_0FFSET,4
ALIEN(D-2)=1
Wait 10
Bob Off D
BUGS=BUGS-1
SCORE=SCORE+100
Return

Object Movement
 |

You can examine the files loaded into the program by going to
direct mode and typing LISTBANK, which will give you a list of the
memory banks and which type they are. You can type the listing in
from the page but you will have to load in the music and graphics
files in order to run it.

New Control Extensions
New extensions to the language are coming out from time to time,
and the primary source of these is the AMOS Club. Only recently
they've been running a series on writing your own extensions to
AMOS, and including a new interface for controlling analogue
joysticks as part of the AMOS Club/Shuffle extension! Interesting
stuff. Obviously it’s easy to include support for anything which
plugs into the joystick port, like Koala pads, graphics tablets etc,
but some things need a little more control. Writing extensions is
not for the faint hearted.

Moving Faster?
You need some animation fast, and you don’t have a compiler? In
that case the next stop on this ride has to be the AMOS Animation
Language. Yes, it’s time for a spot of AMAL.

Mastering Amiga AMOS

eea
12:
Introducing
AMAL

I've been saying I was going to
get around to AMAL for a few
chapters now, and now is the
time. Although I rarely use
AMAL myself, a lot of people
do and swear by it. In fact it’s
more often the beginners who
like AMAL. Professional AMOS
programs tend to leave it
alone as it causes problems
later down the line if a large
program is to be compiled.
Still I'll get the tutorial stuff
over and then I'll leave you to
decide. As well as the tutorial
element, I'll also be explaining
a bit more about the theory of
AMAL. So just skim forward to
the program to type it in if
you like, and ignore the
technical stuff till later if you
already know heaps about
AMAL. (But then if you know
heaps about AMAL and AMOS
in general, what are you doing
reading this book?)
AMAL is the AMOS Animation
Language and it's one of the
most important parts of
AMOS. It's a powerful way of
animating Sprites and Bobs (or
anything you move around the
screen in fact) without taxing
the processor. You see AMAL
commands are specially
optimised BASIC program
commands which are
compiled before running,
making them super fast. You
can easily incorporate AMAL
programs within your regular
AMOS code, and this is how
you do it.
The first thing to know is that
AMAL code can be written in
one of two ways:

Mastering Amiga AMOS

1. as string statements in a normal AMOS program.
2. using the AMAL Editor program.

It is possible to write a whole program using just AMAL and letting
AMOS run the boring stuff. The trade off is that AMAL is harder to
learn and implement well if you're a beginner. But being harder to
learn it’s more minimalist and does the job very efficiently with the
minimum of programming. Anyway look at it like this, a skill
acquired is never a waste of time, eh?

Using AMAL
The easiest and most accessible way of using AMAL code in your
programs is to embed the commands in strings in AMOS statements
like so‘

Amal 1,"s= m 300,200,100 ; M -300,-200,100 J s"
then run the AMAL program (or more properly channel) number 1
by typing:

Amal On 1

which runs AMAL program number (or channel) 1. Each of the AMAL
commands is a single letter, like M for Move, A for Animate, and L
for Let. If you type the letters for the rest of the word, they will be
ignored by AMAL, but will be easier to read and understand,
especially by people who didn't write your program. For clarity it’s
best to type the initial letter in upper case and the rest of the
command in lower case. Why? Well, the commands are embedded in
strings, so the computer won't alter them in the same way it does
ordinary commands.
AMAL contains very clever commands like the Play (or PL)
command, which is for recording a set of mouse moves, for an
attack wave for example, and playing them back to a Sprite. There
are also commands for reading the joystick and mouse positions.
These are much faster than the normal AMOS commands, and are
very useful for the kind of fast, hard action type games, or even for
something like a graphics program where fast mouse reading and
movement is desirable if not essential.
If the AMAL program is a single line then putting:

Amal 8,"pr0gram"

is okay. But if your program uses more lines you have to add each
line to a variable, and then call the variable an AMAL program at the
end. This is the way it is done in most AMAL programs, in this case
with C$, but it could be any string variable like B$, or Z$:

Introducing AMAL

C$=“F0r R=O T0 10 ;"
C$=C$ + "For RO=1 To 320 ; Let X=X+1 ; Next R0 ;"

c$=c$ + "Let Y=Y+8 ;"
and so on, with each line adding the current line to the last, by
physically adding it to C$. At the end of the addition statements,
you make the CS string equal to the AMAL program by adding the
Amal n command, and running the program with Amal On as the
last line, like so:

Amal 8,C$: Amal On 8

Saying Amal 8,C$ is like saying Amal 8, “insert your program here",
and the Amal On 8 line immediately after runs the program you've
just created in your string statements.

I‘

Command Set
The commands in AMAL are much fewer than the commands in
AMOS itself, and although the instruction set is very restricted, it
can do a great deal, especially in the creation of games. The
command set falls into two categories, the commands and the
functions. There are basically just 13 commands, see Table 12.1 for
details.

Option Hot key
Move (or M)
Anim (or A)
Let (or L)

IHIHP (OI D
If (or I)
For To Next (or P T N)
Play (or PL)
Pause (or P)
Autotest (or AU)
Exit (or X)
Wait (or W)
On (or O)
Direct (or D)

Table 12.1. AMAL command set.

And there are 15 functions, and these are just simple ways of
getting information to and from the screen, joystick and mouse.
These are detailed in Table 12.2.

Mastering Amiga AMOS

I Command Action \
‘XIVI returns x coord of mouse
-YM returns y coord of mouse
=K1 status of left mouse button
=KZ status of right mouse button
=10 tests right joystick
=]1 test left joystick
=XH convert x coord into hardware coord
'YH convert y xo-ord into hardware coord

"XS ditto only)
=YS in reverse)

I =BC checks for bob collisions
=SC checks for sprite collisions
=C(n) returns status of object n after BC or SC
=Z(n) see below
=V(v) see below

Table 12.2. AMAL Functions.

A couple of the functions don't fall in to any category, and these are
the Vu meter and the random number function, and I must say that
AMOS must be the only language in the world which features a VU
meter function of any kind! The Vu meter function is handy for
creating Vu meters (those nice bouncing sound level gauges you get
on stereos) in your latest demo, where you can make sprites and
graphics bob up and down or left to right in time to the music.
Check the function of both this and the VuMeter AMOS command in
your manual.
Not everyone needs Vu meters, but everyone needs random
numbers from time to time, and although you can get them from
AMOS and pass the data to AMAL, you can get much better (and
faster) results by using the =Z(x) function, where x equals the
number range. For example using 255 for n will return a value
between 0-255.

Using AMAL Editor
If you intend to print out your program in a magazine or to
distribute to friends, then putting your AMAL code into the AMOS
listings is a better way to go. But if you are the only person going to
see the code, if you’re going to compile your program or lock it for
example, then the AMAL Editor is better. The AMAL Editor takes
your AMAL programs and puts them into a memory bank. Then you
can call the AMAL programs from a bank, saving space in your
AMOS program and stopping anyone inspecting your code. I'll be
looking at the AMAL Editor in depth in Chapter 13.

Introducing AMAL
 |

Sprite Movement
The main strength of AMAL commands over the regular AMOS
commands is that they are compiled, and so run much faster than
the equivalent regular strength commands. So they are the perfect
way to animate your sprites. To move a sprite you use the format:

M w,h,n

where w is equal to the amount of pixels horizontally, h to the
amount of pixels vertically and n equals the speed of the move. So
for example:

M 75,75,100
is a very slow move 75 pixels to the right and down, so if the Sprite
started at 100,100 it would end up at 175,175. If you then did a
move like this:

n 0,-75,20
it would be a very fast move straight up. Negative values of w and h
will give you moves to the left and up, so the sprite would now be
at 175,100. The speed of the move is governed by the n number, ie
the amount of steps in the move. Obviously if you have a lot of
steps, then the move will be slow and precise. If you have a very
few steps the move will be fast.

Sprite Animation
Animating sprites is simple in AMAL, but then again this is the
AMAL speciality, and the reason why the commands are compiled
before runtime. Animation is usually very slow because of the
amount of work the computer has to do, but in AMAL the
animations run independently of the rest of the AMOS program.
The Anim command is a single letter A, and the format is like this:

A ",(X,>')(X,y)
where n equals the number of times the animation cycles around,
and x,y equal image number and duration. A zero in the number of
animation cycles means the animation runs in a loop continuously.
So this:

A °,(1,4)(2,4)(3,4)(4,4)(5,4)
is a continuous animation with five frames, and each frame
duration is 4. The number of the animation frame is the number of
the sprite in the sprite bank.

Mastering Amiga AMOS

AMAL On!
To start your AMAL programs, even if they have been loaded as an
.abk file, is to use the Amal On command. You can specify an AMAL
program number like so:

Amal On 8

or just leave it blank to run all AMAL programs currently resident:

Amal On

As a default situation, the AMAL programs you run affect a
hardware Sprite with the same number, although this situation can
be changed with the Channel command. But in the default situation,
this is the way it works:

Amal On 2

activates an animation involving hardware Sprite 2.

When I Say Jump
just like normal AMOS, the AMAL programs can use labels to mark
certain points in the program, which can be jumped to using the
Jump (or J) command. To set up a label, simply type it in with a : on
the end, like this:

Start:
A 0,(1,4)(2,4)(s,4)(4,4)(5,4)
M 0,-75,20
etc

Now at any point in the program you could Jump to that point again
using:

Jump Start

Labels can be anything, but it's the first letter that counts, as in all
AMAL operations. So to label the program you might just as well
have put:

S:

A 0,(1,4)(2,4)(3,4)(4,4)(5,4)
M O,-75,20

etc

Introducing AMAL
 |

and to jump to that point in the program to have typed:

J S

AMAL is a little bit confusing like that. It might look very
complicated and highly technical to only use the AMAL keywords as
single letters, but I find it helps if you pad them with extra lower
case letters to make them more readable, even much used things
like Move and Anim. Obviously it's a free country and I can't come
round and beat you with a fistful of kippers if you don't do this. But
that's my advice.

Put it all Together
And what have you got? A little AMAL program, that's what. You can
either do the program like this in the AMAL Editor on channel 8:

Anim O,(1,3)(2,3)(3,3)(4,3)
Move 0,75,50
Move 75,0,5O
Move 0,-75,50
Move -75,0,5O

being sure to load and position Sprite 8 first of course. Or you can
do it in AMOS itself, like so:

Rem * Simple AMAL Anim.AMOS *

Rem * It's octopus time again *
Rem

Load “AMOS_DATA:Sprites/Octopus.abk"
Get Sprite Palette
Sprite 8,100,100,1
M$="Anim 0,(1,3)(2,3)(3,3)(4,3)“
M$=M$+"M0ve 0,75,50"
M$=M$+"M0ve 75,0,50"
M$=M$+"Move 0,-75,50"
M$=M$+"M0ve -75,0,50"
Amal 8,M$: Amal On 8

Of course you can use your own Sprites (produced with SpriteX,
perhaps?) instead of the ones on the disk. I know if I see that stupid
octopus any more I'll scream.

Mastering Amiga AMOS

BOING!
You can not only move Sprites but also whole screens. This
program bounces a screen around. The repeat of the effect is

I handled with a bunch of loops, all following through to a bunch of
labels. See if you can follow where the program is going at any
point, and how the program flow changes as things happen:

Rem * Screen Bounce.AMOS *
Rem
Channel O To Screen Display O
Channel 1 To Screen Offset 0
F$=Fsel$(“","",“Pick a picture")
Load Iff F$,O
A$="Boing:Let Y=-256"
A$=A$+"Let RO=256“
A$=A$+"Let R1=8"

A$=A$+"Let R2=45“

A$=A$+"Move O,R2-Y,R1"

A$=A$+"L0op:Move 0,R2-Y-R0,R1"
A$=A$+"Move O,R2-Y,R1"

, A$=A$+"Let R0=R0/2"

A$=A$+"Let R1=R1-1"

A$=A$+“If R0 Jump Loop"
A$=A$+"For RO=O To 25"
A$=A$+“Pause"
A$=A$+"Next R0"
A$=A$+"M0ve O,320,50"
A$=A$+"Let RA=HA+1“

A$=A$+"Jump Boing“
B$=“Boing:Let X=O“
B$=B$+"Let R3=RA“

B$=B$+"Let RO=320"
B$=B$+"Let R1=10"

B$=B$+"Move 0-x,0,n1"

Introducing AMAL

B$=B$+"Loop: Move 0-x+n0,0,n1"
B$=B$+"Move 0-x,0,n1"
B$=B$+"Let R0=RO/2”
B$=B$+"Let R1=R1-1"

B$=B$+"If R0 Jump Loop"
B$=B$+"Sync:“
B$=B$+"If RA=R3 Jump Sync“
B$=B$+“Jump Boing“
Amal 0,A$
Amal 1,B$
Amal On
Direct

The last command means that the Direct mode window is activated,
so you can type:

Amal Off

if you want to, to stop the movement. Fast isn't it? You could also
make the routine stop by adding a Mouse Key command and then
throwing in the Amal Off.
The words Loop, Boing, and Sync are all labels not commands. The
Jump command is putting you through each small routine a great
number of times, and because Amal is compiled the movement is
very fast, almost a vibration rather than a wobble. See if you can
alter the program to make the screen bounce off to the left or right
randomly as if it's made of rubber.
A more manual version of the same gag, which may come in useful
for something (but God knows what) is this screen grab trick.
Basically what you do is click on the screen and then you can move
it around as if it was attached to the mouse Pointer. I suppose if the
screen was a super-bitmap (that is to say bigger than the screen)
you could hide the mouse Pointer and use it to allow a user to scroll
around a big map with the mouse. The mouse is limited so it only
ever inhabits a certain space on the screen, so you don't have to see
where the Pointer is. (The screen I'm loading here is AMOSPIC.IFF
from your AMOS data disk, but any screen will do.)

Mastering Amiga AMOS

Rem * Screen Grabber.AMOS *
Rem
Load Iff "dfO:iff/AMOSPIC.iff",1
Screen Display 0,,,320,200
Channel 0 To Screen Display 1
Limit Mouse 130,50 To 320+130,50+255
Amal O,"Lo0p: Pause; If K1=O Jump Loop; Let Y=YM-
128; If XM-160<64 Jump Loop; Let X=XM-160; Jump
Loop“
Amal On
Screen O
Repeat

Until Inkey$<>""
To stop the effect you have to press the space bar or any other key:

REPEAT UNTIL INKEY$<>""

is a good way to scan for a key while letting another process go on,
especially AMAL progs which will rattle on until they are stopped
with AMAL OFF.

Extreme AMAL
To see the kind of extreme things you can do with AMAL, how about
filling the screen with Bobs? Imagine the worst attack wave of your
dreams, with hundreds of wriggling aliens all over the screen. You
can make things pretty hot for your players, if you follow this
program. It takes a Bob from an ABK file, and animates it and moves
it about in the confines of the screen, then it turns on a load of
other Sprites too, using the loop, and fills the screen with wriggling
beasties. (Jeff Minter would be proud! just a little in joke there for
all old C64 game fans.)
There is normally a restriction on how many AMAL programs (and
therefore events) you can have running, but there is a simple way
around this if you really want to go crazy. Again this program uses
the octopus that Francois included in his original program disks,
but the only reason I'm using that one is because it looks better:

Introducing AMAL
 |

I
Rem * Amal Madness.AMOS *
Rem
Screen Open 0,32O,2OO,8,L0wres
Load "dfO:sprites/octopus.abk"
Cls O
Double Buffer : Flash Off : Fade 4 To -1
Synchro Off
A$=“Anim O,(1,1)(2,1)(3,1)(4,1);"
A$=A$+"Update: Let RO=Z(255)+Z(63)-X; Let
R1=Z(127)+Z(63)-Y; Let nz=z(15)+4;"
A$=A$+"Move RO,R1,RZ; Jump Update“
For I=0 To 63

Set Bob I,1,%111,
Bob I,Rnd(320)+1,Rnd(200)+1,Rnd(3)+1
Channel I To Bob I
Amal I,A$

Next I
Amal On
Repeat

Synchro : Wait Vbl

Until Mouse Key
The trick is done using Synchro, which is used here to exceed the
normal restriction of 16 programs running at once. You do it by
saying SYNCHRO OFF before you define your AMAL programs, as in
this example. Then you can use AMAL channel numbers higher than
15 without getting an error.
One interesting point is that the movements of the Sprites are
randomised using the =Z(x) function to provide random values for
the Move command, so all of the X, Y and step values are randomly
generated in real time. There's really no predicting where those
little monsters will go.

Mastering Amiga AMOS

| Joystick Juggling
Control for AMAL animations must come from either the joystick or
the mouse. Let's face it if you're animating a Sprite of some kind,
you will probably want to move it around, and these are the only
two ways to do it.
Using the joystick is good for games, and reading it from AMAL is
very easy, in fact a lot easier than with AMOS itself. This example
program uses the machine gun toting monkey from the demo disks:

Rem * AMAL Joystick.AMOS *
Rem
Rem * Don't forget to load a sprite.abk file *
Rem * the one called MONKEY_RIGHT.ABK is best *
Rem

Curs Off : Flash Off : Hide : Cls 0
Double Buffer
Get Sprite Palette
A$="Begin:“
A$=A$+"If J1&4 then Jump G ;" : Rem joy left
A$=A$+“If J1&8 then Jump H ;" : Rem joy right
A$=A$+"If J1&2 then Jump P ;“ : Rem joy up

A$=A$+"If J1&1 then Jump 0 ;" : Rem joy down
A$=A$+“Jump Begin;"
A$=A$+“H: Anim 1,(1,4)(2,4)(3,4)(2,4)(1,4) ; Move
16,0,16 ; Jump Begin ;”
A$=A$+"G: Anim 1,($8001,4)($8002,4)($8003,4)
($8002,4)($8001,4) ; Move -16,0,16 ; Jump Begin ;“
A$=A$+"P: Anim 1,(1,4)(2,4)(3,4)(2,4)(1,4) ; Move
5,16,16 ; Jump Begin ;"
A$=A$+"0: Anim
1,($o001,4)($o002,4)($o00a,4)($o002,4)($o001,4) ;
Move -5,-16,16 ; Jump Begin ;“
Bob 1,1o0,100,1
Channel 1 To Bob 1
Amal 1,A$
Amal On
Direct

introducing AMAL

The direction the Sprite faces is entirely dependent on the way the
sprite was drawn, but the directions are read from the stick using
the J1 function. Using the AND operator in concert with the input
from J1 you get the direction the stick is going. One interesting
feature of this program to note is that if you add a $800 to the front
of the image number of a Bob, you flip it horizontally. This works
for all kinds of Sprites and Bobs, and comes in handy as you only
have to draw the Sprite for one direction. You have to bear in mind
with the design that it looks good both ways, although for most
types of Sprite this really doesn't notice.

Mastering Amiga AMOS

I

g
ex
1 3:
Advanced
AMAL

Now is the time to be covering
AMAL routines for AMOS in
more detail, showing you
ways to make your AMOS
programs faster and more
productive. AMAL is a very
important part of what makes
AMOS a special programming
environment, so the more
time we spend on this the
better.
AMAL is a sort of subset of
AMOS which primarily allows
you to carry out very fast
animations, and run a number
of them in parallel with very
little slowing up of the
finished effect, like some of
the programs we featured in
the last chapter. So you can
have a number of animations
going on, a number of AMAL
programs working together, in
effect at the same time. AMAL
is simple to use and the
command set is restricted to a
handful of commands which I
detailed in the last chapter.
The speed of the commands is
achieved by the fact that the
system is automatically
compiling them before they
are run, allowing for faster
execution than normally
possible through BASIC, even
AMOS BASIC. Using AMAL you
can animate everything from a
single Sprite to an entire
screen. Up to 64 of your AMAL
programs can be run
simultaneously, although you
can only run up to 16 without
interfering with the flow of
the regular AMOS commands
using Synchro. (If you're
getting a deja vu sensation

Mastering Amiga AMOS
M

here, don't worry! I did actually say this before, but it needs to be
clear.) I talked about how you use the AMAL commands, in very
simple terms.
Now by way of an introduction to advanced AMAL techniques, I
want to draw your attention to the AMAL Editor you got free with
your AMOS Extras disk. AMAL Editor is an AMOS program so you
either need to run it from AMOS, RAMOS or compile it and run it
from the Workbench. Or even better you can install it as an AMOS
Accessory to be available from AMOS at any time, although this will
chop down your available memory quite abit, so don't do that
unless you have bags of memory. In any event do use the AMAL
editor next time you have the chance, because this will improve
your AMOS programming no end.

Another AMOS Editor
Although for simple AMAL programs, the usual approach of making
your AMAL programs in string variables and adding them together
to make one big program is the best approach, for larger effects the
AMAL Editor is the best way. This allows you to construct a perfect
AMAL program and compact it into a regular AMOS memory bank,
and load and save it as an .abk file. As well as allowing you to enter
and edit the AMAL programs just like a normal AMOS program, the
Editor allows you to save the memory bank files so you can use the
same sequences in many programs, handy for animated logos and
the like.

Figure 13.1. AMAL Editor.

From the main Editor screen you can write your AMAL programs or
test them. A menu selection takes you to the AMAL Monitor, where
you can examine the progress of any of the AMAL channels you

Advanced AMAL

have running. Another menu selection allows you to set up
movements like the PLAY command in regular AMAL, only this is all
automatic and you can save your mouse moves to a memory bank.
Once an AMAL program has been written using the editor it can be
saved to a memory bank and loaded into an AMOS program. Then
the AMOS channels can be called as if you'd done them the
conventional way.

Through Channel Tunnels
Each channel is viewed and used by clicking on its channel number
at the top of the screen. The main screen shows the text editor,
information line and the channel selector. You type your programs
into the editor, changing channels using the selector, and typing a
new programs into each channel.
Editing using the AMAL Editor is a fairly simple affair, and the
controls are as listed in Table 13.1.

Keys Function
Retum key Inserts a line
Otrl-Y Deletes a line
Tab jumps to next tab position
Cursor keys Moves cursor one step in any direction
Shift+cursor keys Start/end of line or Top/bottom of screen

Table 13.1. Editor commands

Once you've written your AMAL programs to the Editor you can run
one or all of them with commands from the Menu Bar. The Run All
and Run Current options run every AMAL channel or just the one
you have up on screen respectively. The DEBUG menu option takes
you into the AMAL Monitor, allowing you to run and debug your
AMAL programs very precisely.

Environment Editor
As most AMAL programs aren't able to run in isolation from AMOS,
there is an Environment Editor (EE on your channel selector) which
is a special channel for you to type the special environment
commands. Before you can use a lot of AMAL commands, some kind
of initialisation is required from AMOS itself. To do this in the
Editor, you need to use the environment commands (See Table
13.2). These are basically a range of important AMOS commands,
which are executed at the start of you running the AMAL programs.

Mastering Amiga AMOS

The environment commands are exactly like their AMOS
equivalents, and are used to make the AMAL programs in your
editor run as if AMOS was running too.
The Set Reg command sets one of the AMAL registers A to Z to a
value between 0-25. As well as these basic AMOS commands, there
are a number of useful test commands
It Screen <number>

This command returns a true result if the numbered screen is
open.

It Not Screen <number>
This command returns a true result if the numbered screen is
closed.

If Bank <number>
This command returns a true result if the numbered bank is
reserved.

It Not Bank <number>
This command returns a true result if the numbered bank is not
reserved.

It Reg <letter>,<value>
This command returns a true result if the AMAL register
mentioned equals the stated value.

If Not Reg <letter>,<value>
This command returns a true result if the AMAL register
mentioned is not equal to the stated value.

Once you've entered the environment commands into the EE
channel, they will be a part of the .abk file, for the next time you
load the AMAL programs into the Editor. The EE channel isn't
executed as part of your AMAL programs when it's all loaded into
an AMOS bank, so any commands you used in your EE channel must
be typed in by hand at the head of the AMOS program. You can, like
me, use a universal cut and paste type program like PowerSnap to
do this, to save you having to write it all down.
As an important footnote to using the AMAL Editor, you must
remember to open an AMOS screen if you intend using Bobs, or the
Bobs will appear over the AMAL Editor (screen number 7 always).

Bugs R Us
The AMAL Monitor is another similar screen which enables you to
run and debug your AMAL programs easily and quickly. If your
AMAL isn't running quite as sweetly as you intended, just slip into

Advanced AMAL

Variables
Sprite Off
Bob OE
Rainbow Del
Screen Open
Screen Display
Screen Offset
Screen
Screen Close
Screen Clone
Double Buifer
Dual Playfield
Dual Priority
Load IFF <name>, <screen>
Colour
Get Sprite Palette <mask>
Flash
Flash Off
Set Rainbow
Rainbow
Load <narne>.<number>
Erase <number>
Bob
Set Bob
Sprite
Set Sprite Bufier
Hide On
Update Every
Channel To Sprite <channel>_<sprite>
Channel To Bob <channel> ,<bob>
Channel To Screen Display <channel>,<screen>
Channel To Screen Offset <channel>,<screen>
Channel To Screen Size <channel>,<screen>
Channel To Rainbow <channel>,<rainbow>
Set Reg <number>,-<value>

Table 13.2. The Environment variables

the AMAL Monitor and you have a range of debugging commands at
your disposal. You must first initialise everything by selecting Init
from the menus or pressing I on the keyboard. Then you can use
one of the following commands:

Mastering Amiga AMOS

R Run Runs selected AMAL programs until a keypress
G Go Until Runs until a certain Reg = a certain value
S Single Step Runs the programs one step at a time

Go Until is a neat way to test parts of your programs, as you can
insert a sort of breakpoint into your AMAL program. All you have to
do is set an AMAL Register to a certain value at a certain point in the
program, and as soon as the program in that channel reaches the
breakpoint, the program breaks and returns to the AMAL Monitor. To
quit out to the main Editor again you just press the Esc key.
As I said before, do use the AMAL Editor if you can, as it's one of
the best ways of adding AMAL to your programs as painlessly as
possible.

Holy Scrolly Screens
Now we've looked at the Editor, how about some interesting bits
about what else you can do with AMAL rather than the obvious
Sprites whizzing about all over the shop? How about screens?
Some games have really sexy super-bitmapped scrolling screens,
but as we all know this takes up a monstrous amount of memory
unless you know how to compress screens into the size of a
matchbook. But using AMAL and a tricky little PROC, we can do a
similar effect for very little typing or using any bitmaps at all:

Rem * ScrollyScreen.AMOS *
Rem
Screen Open O,960,100,8,Lowres
Screen Display 0,130,150,320,10O
Palette O,$80,$90,$AO,$BO,$C0,$DO,$EO
Flash Off
Set Rainbow 0,1,o4,"","","(s,2,a)"
Rainbow 0,1,149,150
HILLS[640,0,50]
Screen Copy 0,0,0,319,100 To O,639,0
Channel 1 To Screen Offset 0
S$="Loop: For RO=O To 80; Let X=R0*8; Next R0; Jump Loop“
Amal 1,S$
Amal On
Do

Advanced AMAL

Loop
Procedure HILLS[Y,X,Z]

Ink 1 = Bar x,o To Y+X,99
For T=O To Z

Ink Rnd(5)+2
TX=Rnd(Y)+X = TW=Rnd(Y/8)+4 = TH=Rnd(50)
Polygon TX,99 To TX+TW/2,99-TH To TX+TW,99

Next T

End Proc

The key commands in this program, the ones which are doing all
the work, are the SCREEN DISPLAY, SCREEN COPY and SCREEN
OFFSET commands. They set up the screen, position it, and copy it
to the right so as the screen scrolls it keeps coming, or so it seems,
giving the effect of a much larger screen. The next important bit is
the AMAL program running in Channel 1. The SCREEN OFFSET is fed
to Channel 1 in the line immediately before the AMAL program is
entered, and when the AMAL program is turned on with AMAL ON.
The AMAL CHANNEL command normally takes a SCREEN DISPLAY
command to move the screen named (in this case O), but this time
we're feeding it a SCREEN OFFSET to slide the screen to the left. The
AMAL loop is set in motion and keeps going until you press Ctrl-C
or AMAL OFF.
We could for example run some Sprites over the top of it, simply by
opening up some Bobs and running them around over the screen.

Rem * ScrollyScreen 2.AMOS *
Rem * insert the spritefile of your choice *
Rem * anything but that octopus, in factl! *
Cls 0
Screen Open 1,1000,160,8,Lowres
Load “spritefile.abk"
Set Sprite Buffer 150
Flash Off : Curs Off : Hide
Get Sprite Palette
Sprite 4,-100,100,1
Screen Display 1,112,100,400,16O
Cls 0
For I=1 To 100

Mastering Amiga AMOS

Ink Rnd(15)
HILLS[Rnd(1000),160,Rnd(160),Rnd(100)]

Next I
For I=O To 3

Sprite s+1,s2*1,125+1*s2,1+1
Channel I To Sprite 8+1
Amal I,“L: M 500,0,250 M -500,0,250 J L"

Next I
Channel 10 To Screen Offset 1
C$="L: For RO=1 To 250 Let X=X+2 Pause Next R0 For RO=1
To 250 Let X=X-2 Pause Next R0 Jump L "
Amal 10,c$
Amal On
Wait Key
Direct
Procedure HILLS[X,Y,W,H]

Polygon X,Y To X+W/2,Y-H/2 To X+W,Y To X,Y
End Proc

The hills are drawn in a similar way, but this time I've made them
random, rather than all green and pleasant! Next we've added
Sprites from the Sprite file you chose, and this can be any one on
your demo disks or from SpriteX. The Sprite is copied onto the
screen, just single unmoving images for the sake of simplicity, and
the images are staggered down the screen using the SPRITE
command. The little AMAL program after that scrolls the Sprites
back and forth 500 pixels across the screen. Next we do the old
CHANNEL to SCREEN OFFSET number again, only this time just
because I feel like it we're going to channel 10. Why not? The AMAL
program after that takes the screen and scrolls it back and forth
too, like the Sprites. Try a combination of the two programs, and
add the Rainbow from the first program to the second, for the full
effect.

Autotest
Some of the programs in this book use an AMAL process called
AUTOTEST. This is almost the subject of a small book in itself, but
here's a quick rundown on what it can do for you.

Advanced AMAL

Basically what AUTOTEST does for you is speed up programs which
require a test of some sort, like looking for the coords of a point on
the screen, or checking a mouse position etc. Instead of waiting
every time a loop in the program goes around to test for something
happening in an AMAL program, you use AUTOTEST and everything
you specify is tested after every vertical blank (or Vbl) of the screen
display, which means your tests happen every 50th of a second.
This means if your tests are slowing down a mouse movement, the
tests will be pretty much invisible and the movement will be
smooth and in real time.
This is a quite advanced AMAL technique, and deserves a bit more
explanation. Look at this simple example:

Rem * Followmouse.AMOS *
Rem
Load “load a sprite here.abk"
Get Sprite Palette
Sprite 8,130,50,1
Amal 8,"Loop: L RO=XM-X; L R1=YM-Y; M R0,R1,50; J Loop“
Amal On

Direct

In this example the mouse is followed everywhere on the screen by
the Sprite. It's a simple program but a neat one. In the AMAL
program the mouse position is put into registers O and I, via the
XM and YM functions. Then a move is transmitted to the Sprite you
have activated, based on the information about where the mouse is.
But the movement of the mouse is so fast and fluid that even with
AMAL you can't get the tests for the position of the mouse as fast as
the movements of the mouse. This means that the Sprite lags
behind and looks clunky and slow. Now see what happens when we
use Autotest to do the tests rather than AMAL itself:

Rem * Followmouse 2.AMOS *
Rem
Load "yes, the same sprite again.abk"
Get Sprite Palette
Sprite 8,150,60,1
A$="AU (I RO<>XM J Update"
A$=A$+"I R1<>YM J Update else X"

A$=A$+"Update: L R0=XM; L R1=YM; D M)"

A$=A$+"M: M R0-X,R1-Y,2O w;" I

Mastering Amiga AMOS

Amal 8,A$
Amal On
Direct

The same effect but look how smooth the Sprite is! It follows the
mouse smoothly and carefully, and that's the wonder of Autotest.
Each time the screen is refreshed the information about the mouse
is fed to the registers holding the coords for the movement of the
Sprite. So the moral of the story is: the greater the resolution, the
finer the movements. The faster the tests the more sensitive your
programs are to rapidly changing human input.
Although this lends itself to arcade games where reflexes are more
in use than brains, you could just as easily use these fast tests for
keyboard input, or the rapidly changing input from a sound
sampler plugged into the parallel port perhaps.

AMAL Games
Okay it's time to come clean. One of the reasons you'd use AMAL, in
fact a lot of the time AMAL comes into the picture, what you are
doing is programming a game. Let's face it, we all do it from time to
time, and there's no shame in that. (Grin.) Here is the way you use
AMAL to make killing games.
I've devised this simple game using AMAL, you can't shoot
anything, you can only avoid, and to keep it easy to understand I've
made the alien moves static. although you can get as fancy as you
like. Here's the listing:

Rem * AMAL Game.AMOS *
Rem
Load “Extras:Sprite_600/aliens/alien1.abk“
Load "Extras:Sprite_600/space/ship3.abk",1
Screen Open 0,320,200,16,Lowres
Hide : Curs Off : Flash Off : Cls O
Get Sprite Palette
Double Buffer
Autoback O
Bob 1,0,o0,1o
Bob 2,a20,a0,1

A$="Anim 0,(18,4)(19,4)(20,4)(21,4) ;"

Advanced AMAL
 |

A$=A$+“Main:"
A$=A$+"If J181 Jump Down ; "
A$=A$+"If J1&2 Jump Up ; "
A$=A$+"Jump Main"
A$=A$+"Down: Move O,-2,1 ; Jump Main"
A$=A$+"Up: Move 0,2,1 ; Jump Main"

B$="Anim O,(1,4)(2,4)(3,4)(4,4) ;"
B$=B$+"Movealien:"
B$=B$+"Move -10,0,10 ; Move O,-50,10 ; "
B$=B$+"Move -10,0,1O ; Move 0,50,1O ; "

B$=B$+"Jump Movealien"

Channel 1 To Bob 1
Amal 1,A$
Channel 2 To Bob 2
Amal 2,B$
Amal On
Wait Vbl

Repeat
Inc SCORE

Until Bob Col(1)
Boom

Paper 0
Pen 2
Centre "Game Over, Man!"
Locate 0,20 : Print "You lasted : “;SCORE;" clicks,
bozo!"
Update

Notice I've used a pair of Sprites from the Sprite_600 collection,
which you should be able to find on your Extras disk. If it's not on
your disk you should be able to obtain it from the AMOS PD Library.

Mastering Amiga AMOS

The Sprites are in different Sprite files so the second ABK file is
loaded using a ,1 after the load command, which appends the
second Sprite file to the first. If you forget to do this you'll
overwrite the first Sprite file with the second and you'll only have
one Sprite in the bank.
After the Sprites are loaded I get their palette, which fortunately
coming from the same collection of Sprites is the same for both
Sprites.

Then we've got the usual CLS, CURS OFF and HIDE type things that
you will get used to putting at the top of all your programs. Then
we're DOUBLE BUFFERing the screen, which makes a second
invisible copy of the screen, and all graphic operations are
performed to this screen to make the animation and movement a
little smoother. It follows that we'll next use AUTOBACK to sync the
drawing of the Sprites with the movements.
Next the Bobs we are using are turned on using BOB. In this case
Bob 1 is the space ship, Bob 2 is the alien. The start images for each
Sprite and the position on the screen are set here, the left side of
the screen for the ship and off the right side of the screen for the
alien. (The alien is started off the screen so it can enter the screen
when it starts to move.)
The next bit is the interesting part. We've created the AMAL
programs, destined later on to be two channels 1 and 2. The first
channel is defined using the variable A$ and the second BS.
In A$ we set off the animation of the ship Bob so the little flame
coming out of the back of it moves. Then we check the joystick port
to see which way the stick is pointing, and depending on which way
it's pointing we jump to the label containing the up or down moves,
which move the ship up or down 2 pixels, at a rate of 1, each time
an up or down movement is detected. If you hold the stick in any
one of these directions of course, the ship will move smoothly up
or down.
In BS we specify the movement of the alien and his animation. First
we set off the animation loop using Anim, then we go into a loop
which moves him 10 pixels left, and 50 down, 10 pixels left and
finally 50 up, over and over. This advances the alien towards your
ship until it either hits it or passes it. As this is a simple example,
I've only made the alien make one pass, but you could very simply
keep it all going by looping the alien movement to continue back at
the righthand side of the screen and even at a different position.

Advanced AMAL

Next we assign a channel to each Bob, so its movements are
controlled by one or other of the programs we've created. And
when we turn the AMAL programs on and off it all goes. The WAIT
VBL waits for the next vertical blank between each move.
Finally we set a REPEAT UNTIL in motion until the two Bobs collide,
again no explosions (so violent, don't you think?) because this is a
simple example. When the two Bobs collide we hear a BOOM sound
effect, although this could easily be our own sample, and a message
is printed to the screen to tell you how long you lasted. And there
you have it, in essence, the guts of a simple game using AMAL. You
can make a lot of this faster and more heart pumping by using
Autotest of course, but for something this simple it's not necessary.
Which brings us to what you can do with this shell of a game.

I'm a Game, Build Me!
Now you have the makings of a game. Some of the refinements you
could try include having a number of attack waves with aliens at
different heights and speeds, allowing shooting from both the ship
and the aliens, allowing the ship to move forward or back within a
limited area, and from there on all the refinements you can add get
a little out of hand: sound effects, samples, hi-score tables with
rainbow text, and Uncle Tom Cobbly and all. All of the other
routines you need for each part of your program are somewhere in
this book, and it’s up to you to piece them all together into the best
game ever made!

Mastering Amiga AMOS

g
ea
1 4:
Icons and
Screen
Blocks

Icons mean something
different in AMOS from what
they do in the real world, for
example in AmigaDOS. Mostly
in the wide world of
computing they are a pictorial
representation of something,
for example a picture of a disk
on the Workbench which lets
you manipulate files
graphically with the mouse
rather than textually by typing
things into the computer. The
Icon concept stems from
research done at Xerox Palo
Alto Research Center in the
US, and later used by Apple
Computer Inc in its Apple
Macintosh range, as part of
the Windows, Icons, Mouse
and Pointer system. Of course
the WIMP system is also used
by Amiga in the form of the
Workbench, but this isn't what
AMOS Icons are all about.
Icons in AMOS are pieces of
background graphic, which
can be stored in a memory
bank like any other kind of
Sprite, Bob, sound, music or
graphic screen. Once stored
they can be pasted to the
screen in any order to make
up custom backgrounds
which, because they are made
from small repeated pieces of
graphic, take up less time and
memory than storing and
unstoring whole screens each
time you want a new
background. It's like tiling a
bathroom with patterned tiles,
each tile is the same and only
very small in size, but put a
lot of them together and you
cover a large area with an
interesting pattern.

Mastering Amiga AMOS

T|l|ng for Begmners
I Most games consist of loads of different screens, and like I said just

now, if these were full size IFF screens, your average arcade game
would be about 3Mb in size. So the easy way out is to make small
square graphics, called tiles in the trade, and paste these to the
screen. Say you have a graphic of a wall. Most of the tiles are the
same, except for the one which has a lamp-fitting, a bit of moss or a

~ door in it. This means that you can build the whole wall from just
i five tiles, repeating them over and over as you go along.
. The Icons are printed to the screen in replace mode, so anything on
' the screen will be erased by the new graphic. This is different from

the modes for Sprites and Bobs which don't appear to touch the
background at all. Sprites and Bobs will however float over Icon
built backgrounds with the same ease that they would over a
complete IFF screen graphic.

Icon Do That!
. Does anyone do Giz A job jokes anymore? I doubt it. Anyway, Icons
I is what we're talking about. so let's get into it. Icons, as I've already

said, are the more permanent way of storing backgrounds as
I memory banks full of small portions or tiles of graphics, and this is

the most memory effective way of creating backgrounds.
. You can get an Icon tile from an IFF file like you can with Bobs or

blocks (see Blocks Away below), but the best way is to create your
Icon tiles in an editor of some sort and save them as a bank. You
can create them in SpriteX or a similar Bob program, and if the
editor doesn't save as Icons you can always run the resultant Bob
bank through a program like ICON_CONV.AMOS by Shadow
Software.
To save you the trouble if you can't find a program to do the job,
here is how to write your own simple Icon grabber:

Rem * Icon Grabber.AMOS *
Rem
Flash Off : Cls O
Shared N,X,Y,X1,X2,Y1,Y2
N=1

Dir$="df0:"
F$=Fsel$("*.iff“,"“,"Pick an IFF file")
Load Iff F$,0
Do

X=X Mouse : Y=Y Mouse

Icons and Screen Blocks

If Mouse Click=%1 Then BEGIN
If Mouse Click=%10 Then FINISH
X$=Inkey$
If X$="a" Then SAVIT

Loop

Procedure BEGIN
X1=X Screen(0,X) : Y1=Y Screen(O,Y)
Shoot

End Proc

Procedure FINISH
X2=X Screen(0,X) : Y2=Y Screen(O,Y)
GRAB

End Proc

Procedure GRAB
Get Icon N,X1,Y1 To X2,Y2
Bell
Inc N

End Proc

Procedure SAVIT
F$=Fsel$("*.abk",“","Save your icon bank")
Save F$,2

End Proc
A little crude, but it gives you the idea of what you are aiming at.
I've stripped it down to its bare nothings so you can understand
what's being done.
First the usual setup guff, plus a little file requester call to load a
picture. This picture should be some background patterns you wish
to grab, and in IFF format from a program like DPaint 4 (Electronic
Arts). To grab an Icon using the program you press the left button
at the top left corner of the Icon, and press the right button at the
bottom right corner. The left button press is confirmed by a Shoot

Mastering Amiga AMOS

sound, and the right by a Bell sound. The indicated rectangle is
then grabbed into an Icon in bank 2. The number of the Icon is
given by the variable N, and this is incremented as you go to place
the Icon in the next slot along in the bank.
Finally, when you are ready to save off the Icon bank, press the a
key, and the save requester will pop up, allowing you to save the
bank to disk as any filename you like.
As I say this isn't the best and most efficient program, but this is
how it’s done. Take this basic framework and add to it, testing for
bugs as you go, and you'll be well on your way to producing your
own Icon grabber.
If you're a bit unhappy about bashing in all that code, or just want
something a bit more powerful, try SpriteX 2 (see details in Chapter
10) for effortless production of Sprites, Bobs and Icons.

Blocks Away!
As well as Icons, the AMOS system provides you with a system of
what it calls Screen Blocks, and these are just like Icons (pretty
much) except that they are really only temporary measures. The
blocks you create are not stored with your program and cannot be
saved to a memory bank. There's no real need to save them either,
as they are grabbed from the screen anyway, and chances are you
have the screen from which the block was grabbed anyway, right?
This program demonstrates the grabbing of a screen block and
moving it around:

Rem * Screen Blocks.AMOS *
Rem * load some picture or other *
Rem

Load Iff "load your picture choice here.iff",O
For X=O To 7

For Y=O To 9
Get Block X*10+Y+1,X*32,Y*20,32,2O

Next Y

Next X

Do
Put Block Rnd(48)+1,Rnd(Screen Width)+1,Rnd(Screen

Height)+1
Loop

icons and Screen Blocks

Of course once you know that the command is grabbing the correct
area of the screen for the block, you could grab it under the main
screen in screen I or something like that, so the user doesn't see
the grab happen. It looks sloppy if the user of a program can see
stuff like that, as it should all happen under the surface and the
user only gets to see what he should see.

A Block Alert
Blocks are not just good for game backgrounds. You can use them
to good effect to create more technical effects. Take this alert box
for example. The block covering the words won't destroy them, just
look:

Rem * CBlock Alert.AMOS *
Rem
Paper 7 : Flash Off : Curs Off : Cls
Locate 0,10 : Centre "Notice this text will still be
here..."
BOCKSALERT

Wait Key
Procedure BOCKSALERT

W=16O : H=1OO : X=8O : Y=50

Get Cblock 1,X,Y,W+16,H+16
Paper 0 : Pen 2
Ink O : Bar X+5,Y+5 To X+W+5,Y+H+5
Ink 0 = Bar X,Y To X+W,Y+H
Ink 2 = Box x+1,Y+1 To X+W-1,Y+H-1
Locate X Text(X),Y Text(Y)+2 : Centre "Under the box"
Locate x Text(X+W/2)-3,Y Text(Y+H)-4
XB=X Graphic(X Curs)-7 : YB=Y Graphic(Y Curs)-7
Print Border$("Yeah!",2);
Reserve Zone 1
Set Zone 1,XB,YB To X Graphic(X Curs)+7,Y Graphic(Y

Curs)+15
While 0=O

While Mouse Key=O : Wend
Z=Mouse Zone

Mastering Amiga AMOS

If Z=1

Paper 2 : Pen 0
Locate X Text(X+W/2)-3,Y Text(Y+H)-4
Print Border$("Right",2)
Pen O : Paper 2

Play 30,40 : O=1

End If
Wend
Put Cblock 1,X,Y

End Proc

When you click on the clickbox, which is a complete AMOS
construct rather than any kind of automatic alert box, it will go
away leaving the words underneath intact. Note the clever use of
CBlock to ensure that the words stay unharmed, or are at least
replaced. A lot more subtle effects can be made like this with a little
bit of thought. just think of any area of screen that you might want
stored and replaced, and you'll get the idea.

Get Block Put Block
This program does a neat trick with an area of screen. The effect is
not unlike a TV digital effect, where a picture is moved around the
screen. You can do this better in fact, if you load another screen
under the current one, mess up the top screen with a block from
that screen, then float in segments of the hidden screen onto the
top screen and place them.

Rem * Get Block Put Block.AMOS *
Rem
Load Iff "any iff picture“,0
Get Block 1,10,10,110,100
Double Buffer
Wait Key
For X=O To 320 Step 16

Put Block 1,X,Y
Put Block 1,Y,X
Screen Swap : Wait Vbl

Next

icons and Screen Blocks

The block is first grabbed from the screen you loaded, and then it's
stamped using the For Next loop across the page, inverting the X
and Y variables to swap over the X and Y coords for the places the
blocks are placed on the screen. Messy but fun.

Advanced Blocking
If you want to do more with Icons and Blocks you will have to either
write your own Icon program, not an ideal solution, or buy an
extension to AMOS called AMOS TOME. This is one of the best ways
to design and use Icons, so you'll be well advised to check it out.
Want to know more? Just turn the page.

Mastering Amiga AMOS

g
ea
1 5:
AMOS TOME

TOME is a super extension to
the AMOS system which
enables you to create mapped
games with ease. In fact
anything that requires screens
linked in a certain order is
more easily done with TOME
installed.
TOME began life as a small
utility program on the Atari ST
version of AMOS (called STOS
as you probably gather by
now), which allowed the user
to produce game backgrounds
that were much larger than
the actual physical screen.
Over a period of the last few
years the product has
improved until, when AMOS
was finished, an Amiga
version of TOME was created.
AMOS TOtal Map Editor, or
AMOS TOME, is the ultimate
MAP designer for use not just
with AMOS but with any
language on any computer!
This chapter is designed as an
in-depth introduction to TOME
and all its important bits and
pieces, as this is the biggest
extension to the system
besides the Compiler or AMOS
3D, and as such is something
you really need to know
about.

TOMEing About
The program comprises of the
TOME Editor, where all your
bits of map are patched
together and saved as a file,
and the TOME extension,
which is added to the AMOS
system to do various map
type commands for you.

Mastering Amiga AMOS

| The latest versions are fully AMOS 1.3 upwards and Compiler
compatible and new versions are supplied free to all previously
registered AMOS TOME users. At the time of going to press version
4 was about to be completed which has up to 60 commands for
creating the largest and most detailed maps on any computer.
The best reason for using TOME in your AMOS programs rather than
creating the routines from scratch is that TOME does it all for you.
It allows you to create giant screens in memory using a series of
simple building blocks. These areas of memory are called MAPs, for
obvious reasons, and you can design a giant MAP the height of
many screens and it will not take up nearly as much memory as
drawing a picture that big (a super-bitmap). TOME works a little bit
like a jigsaw or collage in that first you create the basic building
blocks called Tiles, you then use the editor to paste these building
blocks onto your MAP area thereby creating a giant background for
your games.
Tiles are simply square blocks of a picture cut out using the utility
supplied with TOME. This utility cuts up a picture into 16*16 or
32*32 pixel blocks and stores them as AMOS Icons in an AMOS Icon
bank. So your Tiles are initially created by drawing them on a paint
program like Deluxe Paint and saving them off as IFF screens. The
Tiles are drawn on the screen starting from the top left (Tile
number 0) and working right, then going to the next line, working
right and so on. You then load up the TileMaker program, which
converts the picture into AMOS Icons. AMOS Icons are areas of a
screen which can be cut out and saved inside a safe area of memory
ready for later use. They can be thought of as less-flexible versions
of AMOS Bobs. (See Chapter Nine for more details.)
The practical use of TOME can be seen in AMOS games from PD
libraries, but also in commercial games which have large scrolling
areas. Rainbow Islands (Ocean Software) and Ghouls'N'Ghosts (US
Gold) are two examples that spring to mind.

Installing TOME
You can't just pick up a copy of the TOME disks and run them.
TOME is an extension to the language, and as such has to be
installed. Before you can use the TOME commands, or any of the
programs on the TOME disk, you need to install the TOME extension
onto your copy of AMOS. Extensions are special additions to the
AMOS system, and they have to be copied to the right directory and
have the config program look for them on bootup.
Once the extension is installed into AMOS, you can use the AMOS
TOME commands within your programs or even in direct mode, as
they become part of the AMOS Language.

AMOS TOME
—

To install the TOME tools, just load the TOME_lNSTALL.AMOS
program into your AMOS editor and run it. Then you just need to
select what version of AMOS you wish to install the extension onto.
The program will then look for a disk called AMOS: (if you have
ASSIGNed this in your startup-sequence on your hard drive it will
also work) and save a program called TOME.Lib into your
AMOS_SYSTEM directory. Once this is done, you can quit the
TOME_INSTALL program.
The next step is to load in the AMOS configuration program, for
example on V1.3 of AMOS it's called CONFIG1_3.AMOS. Next you
will have to load the default configuration. Next you have to select
the LOADED EXTENSIONS item. This will give you a listing of all the
extensions that have been installed into AMOS. You will probably
have something like the following installed:

1:AMOS_SYSTEM/Music.Lib
2:AMOS_SYSTEM/Compact.Lib
3:AMOS_SYSTEM/Requester.Lib
4:
5:AMOS_SYSTEM/Compiler.Lib
6:AMOS_SYSTEM/Serial.Lib
7:
8:AMOS_SYSTEM/CTEXT.Lib
9:AMOS_SYSTEM/Range.Lib

next you have to click on the blank Line 7 and enter:

:AMOS_SYSTEM/TOME.Lib"

then save that configuration as the default.
Now every time you boot your version of AMOS, it should load up
with the TOME extension installed, ie. it'll show up on the list of
loaded extensions shown on the AMOS startup screen. The
extensions to the system have been added and you can now use all
the TOME commands in your AMOS program.

Mastering Amiga AMOS

g! -1- EDIT EDIT "6’ 1<-‘1.1 2'14 "'

ELI-ll'£li'“_.IE] 111‘! W11,‘ 1111 -111-M -1-111 -1"-s"-1"-1 -1111 -11"-11 11'*'ii’*I -1111 "I“l"'|i"i 1111 ‘Ti?

.-‘I-I *3

_.-v—..-
-;

14--l‘".*"I'l--I‘ -I‘. ‘I'l"'I‘*.*
* ":2-r.,l__y,,,H,, _ .
I ..

-

r I’ r I’ r r r r r tr r r r IF’ r I
.!:T|:

Figure 15.1. The TOME Editor.

The TOME Editor
The heart of the TOME program is the editor. Using this very slickly
written program you can create, edit and save all of your game
MAPs to disk ready for use in your own programs. Editor is a
powerful map editing system which includes simple drawing
facilities similar to those found in DPaint, although these should be
viewed as strictly touch-up tools rather than for origination of your
backgrounds. To get the most out of the system you must have at
least 1Mb of memory, but these days I reckon everyone must have
1Mb at the very least. (What, you haven't? Run out and buy some
more memory at once! What do you think you're playing at?)
When you load the editor you see that the screen is divided into
four main parts. The first two are tool bars which run along the top
and bottom of the screen and control all of TOME Editor's
functions. Each bar is divided up into a number of small buttons,
and as you click on a button on the top bar a new selection of
options appears on the bottom bar.
The next part of the screen at the far left is the tile selector and
contains copies of all the Tiles you created previously with a paint
program, and tiled with the TileMaker.AMOS program. Obviously

:'PE'-‘Li
-I
Tl

Sal;-11

1-_,\r|--+:"ar:.a.-er"

I

AMOS TOME
_

the scroll arrows at the top and bottom of this area allow you to
move through the selection of Tiles you have loaded, as most of the
time you'll have more tiles loaded than you can view on a single
solitary screen sidebar!
You click on the righthand button while positioned over the map to
select a Tile for placement. At the bottom of this part of the screen
is a button with the word PRESET on it. If you click on this you will
see the current range of Tiles replaced with another set, a user
defined set.
The last bit of the screen, the largest area on the screen, is of
course the current MAP itself, just off centre and to the right of the
screen. To navigate around the MAP you can use either the joystick,
cursor keys or the little arrows in the far right corner of the top tool
bar.

Configuring TOME
The Niceness menu option allows you configure the editor to suit
your own tastes. The different options allow you to change the
screen from PAL to NTSC, switch on the cursor coordinates, adjust
the Tile/tool bar palettes, save the settings exactly how you want
them and even return everything back to their default states, the
usual config sort of stuff really.
The palette controls are the same as in the AMOS Sprite editor (and
SpriteX), and allow you to set either the colours of the control icons
(to your own preference) or of the Tiles themselves. Simply click on
the colours you want to change, and use the sliders to set the RGB
values.

Auto Parts
There are a couple of automatic modes you should know about.
First is Maze Mode. By using this and selecting Tiles for corners and
junctions etc TOME will follow your mouse movements and will
create instant mazes as you draw. This is a really nice feature, but
not as nice as Auto Map. Whereas Maze Mode will follow your
mouse movements to produce a maze of your own design, this
mode goes a step further and does all the work for you. This mode
can take a while, especially when used on large maps.

Mastering Amiga AMOS

The TOME Command Set
The actual TOME extension only works from within AMOS and on
files created with the TOME Editor. As a bit of a taster here are
some of the commands you can use from within AMOS when TOME
is installed. Obviously these have been augmented and with the
new version 4 you'll have a great many more options, but I'll go into
those in a minute. TOME is good, not just for map based games, but
for all programs where a larger area of screen is required, like city
maps, circuit diagrams, medical software, you name it.
MAP DO x,y
Redraws the map to the current screen.

MAP TOP x,y
MAP BOTTOM x,y
MAP LEFT x,y
MAP RIGHT x,y
These four commands are exactly the same as the MAP DO
command, except that they only redraw one edge of the display
area, very handy for fast scrolling.

MAP VIEW x1,y1 to x2,y2
This command creates a window to which TOME will limit all of the
MAP drawing functions. Obviously the window wouldn't be any
bigger than the currently defined screen, or you couldn't see it!

TILE SIZE x,y
This sets the size of the Tiles to be used. Normally either 16 or 32,
but smaller sizes can be used if necessary.
MAP PLOT t,x,y
Places Tile tat co-ordinates x,y in the map. The same as using the
DRAW function within the TOME Editor.

MAP BANK b
Changes the bank used for map storage to bank number b.
Normally, the default is bank 6, which you should reserve to the
length of the map, and then Bload the map in, like so:

Rem * Map Bank.AMOS *
Rem
Open in 1,"Bigmap.map"
L=Lof(1)
Close 1

AMOS TOME

Reserve as work 6,L |

Bload "Bigmap.map",start(6)

TILE BANK b
Changes the Tile value list bank from the default of 8 to b. This is
very handy if you want to keep multiple Tile value banks in
memory at one time, a bit like the multifont aspect of CText.
And the extension also has some new functions like these:
=MAP X
Returns the width of the current map in Tiles.
=MAP Y
Returns the height of the current map in Tiles.
=XTlLE(x)
Changes pixel coordinate x into a Tile coordinate.

Changes pixel coordinate y onto a Tile coordinate.
=MAP TlLE(x,y)
Returns the Tile number at found at MAP coordinates x,y.

=TILE VAL(x,y,l)
Returns the value from list I of the tile at MAP coordinates x,y.
=MAP CHECK
This function will run through the map data, checking all the Tiles
used in the map against those available in the Tile bank. If a Tile is
used in the map that isn't available in the Tile bank, then the
function will change its Tile number to zero. MAP CHECK returns
the number of Tiles that it has had to change.
TOME is very flexible indeed, and the applications for the extension
grow with each upgrade. These commands I've explained here are
just some of the commands available with the TOME extension
installed, there are many more and I'm afraid if you want to know
more about them you'll have to buy TOME and find out!

TOME Docs
In the past the docs to the TOME program were featured on the
TOME disk as a home built hypertext program (albeit a very good
one), but recent versions of the program have had a specially
produced paper manual. Hypertext is fun and informative, for sure,
as you can click on various text screens and get information about

Mastering Amiga AMOS

any aspect of the program that interests you, roaming around the
text for the manual in an interactive way. This is quite impressive
as I say, and fun, but I still prefer paper manuals. Nothing replaces
flipping back and forth through a manual to find the information
you like, and holding it on your lap while you code. And also the
paper manual has one big advantage: you can read it and run the
program at the same time! I'm glad that Shadow Software have
made the switch, and the new TOME manual is a nice, cleanly
written piece of documentation.

More Goodies
The bonuses to the system don't stop there. The AMOS TOME
Goodies Disk is only available to registered AMOS TOME Users, and
the current disk includes three new games written with AMOS
TOME. These are: Magic Forest II, a horizontal scrolling platform
game, Green Flag, an Isometric 3D scrolling game, and The
Dungeon, a Dungeon Master style 3D dungeon game. All three are
supplied in AMOS source form, so that you can examine the code
and use similar routines in your own productions. The TOME
Goodies Disk 1 costs £5.00 and is only available to registered TOME
users who have sent in their registration card. Goodies Disk 2 is
said to be in preparation and will be available soon after the release
of TOME Series 4.

TOME Series 4
I've spoken a lot about TOME Series 4, so I asked Aaron what was
going to be new in the next version of TOME. Apart from including a
better editor (could it be any better?) TOME series 4 includes a lot
of very important additions, not least of which is MaPLe, the Map
Programming Language. Not only that but it features a Tile
Animation page, and a command set now up to 60 commands. The
new commands offer a whole new universe of subtlety over the
previous versions, but also include such things as Tile Animation
control, automatic map updates, and the special Map Fall command
which enables you to create your own Boulder Dash type clones.
There's even a single command to handle 8 way scrolling of your
maps!
Currently on what Aaron calls the "will we put them in for this
version" list are map flooding, special commands for drowning your
player as well as dropping rocks on his head! Best of all, you will be
able to upgrade from TOME v3 to Series 4 very cheaply, with the
obvious discounts for AMOS Club members. '

AMOS TOME
—

Don’t Just Sit There
AMOS TOME is just one of those things you have to have if you're
serious about AMOS. Anyway if you're like me you like to have
everything to do with AMOS anyway, and this is one of the sexier
add-ons, so it's compulsory really. At present TOME costs just
£24.99 (or £19.99 to AMOS Club members) from Shadow Software.
As I said before, the next upgrade is going to be TOME 4, released
probably by the time you read this. Install TOME today, and create
game maps as big as your ideas.

Mastering Amiga AMOS

-2-Ii-|_-----_------.-_

4!Ar-:.
I ea

1 6:
Music and
Sound

One of the major things which
sets AMOS aside from other
forms of BASIC is its grasp of
the Amiga’s astonishing sound
playing ability. But then the
whole point of AMOS is that
you are able to access all the
features of the Amiga quickly
and simply by using one
command where before only a
few hundred would do.
The Amiga can capture and
play sampled sounds very
easily, and this means that a
lot of high quality stereo
music can be made just using
the Amiga’s internal sound
generation. Although there are
built in sounds like:

Rem * Basic Sounds.AMOS *
Rem
Shoot
Wait Key
Boom
Wait Key
Bell
Wait Key

The sound chip can be used,
and also samples can be put
into a bank for you to use in
your own programs. Plus
AMOS can play music, like the
ABK files on your demo disks.
AMOS can play a music track
as easily as most other BASIC's
can print Hello World. All you
have to say is:

Music 1

Mastering Amiga AMOS

I and the first piece of music you’ve stored in the music memory
I bank is played until you type:

Music Stop

to halt the current piece of music, or the more drastic:

Music Off

It's easy, once you get the music into the Amiga in the first place,
that is. In most cases this means that a series of samples are stored
in the memory of the computer and a little piece of code tells the
sounds at what pitch to play and when. The normal way of doing
this using an Amiga is using a tracker program, like Soundtracker,
Noisetracker, Protracker or the totally brilliant MED. Any of these
programs can be used with AMOS, as once the track has been
created you can convert the track to an ABK file and from there on
it's plain sailing. Or you can load the track in directly using the
TRACK LOAD commands.

TRACK LOAD
Loads a track into the music memory bank, although you normally
have to specify:

Track Load "dfO:mod.music",3
to load properly. This loads a track, a music module from
soundtracker et al, called mod.music into bank 3.
TRACK PLAY
This plays the current music track (usually memory bank 3) if
loaded. To specify:

Track Play 14
You'd type this if the track was in a different location from the
default. Or if you have a number of tracks to play.

TRACK STOP
This halts the current track. Stops it in its tracks in fact. (Ho ho.)

Using Trackers
The various tracker programs you need are all public domain, with
the exception of certain versions of MED which are what they call
licenseware, that is to say the program costs a bit more than a
£2.50 PD disk, but the author of the program gets a royalty every
time the program is sold. If you know a little bit about music then
you won't be too surprised as to how the trackers work, but for the
uninitiated here's what they're all about.

Music and Sound

They almost always feature what we call in the trade a pattern
editor like you find on most modern drum machines, only the
keyboard of your Amiga turns into a musical keyboard and the
beats you put into the program can have a pitch. The sounds in
trackers are almost always samples, like the kind you can make
with your own sound sampler, with the exception again of MED
which also uses the sound chip in the Amiga to create synthesised
sounds. Most trackers come with disks of sounds for you to get
started from, most of which include samples from some of the most
expensive synthesizers you can buy!
The way they work is that you assemble patterns, short sequences
of music lasting for 64 beats, and then when you’ve made a pattern
for your verse, chorus and other little fill-ins etc, you finally chain
them all together to make a complete piece of music. You say which
pattern you’d like to play when, and the program will play each
pattern in turn to make meaningful music.
So for example you could have an intro on pattern 1, a verse on
pattern 2, a chorus on pattern 3 and a fill-in on pattern 4. (Tunes
are usually more complex than this but you get the gist.) So the
patterns could be played in this order:

Step 1
Step 2
Step 3
Step 4
Step 5
Step 6
Step 7
Step 8

Pattern 1

Pattern 2
Pattern 2
Pattern 2
Pattern 3
Pattern 4
Pattern 2
Pattern 2

...and so on. The beauty of a pattern based system is that you only
have to input your patterns once and then they can be played and
arranged as many times as you like, rather than a more linear
system which would mean you’d have to type the tune in every
time you wanted it to play.
Creating music with a tracker is easy, as you can have four tracks
(in some cases even 8 with programs like OctaMED Professional)
and you can either put the notes in one at a time in what we call
step time, or play along with the other tracks live on the keyboard
in what is termed real time. Step time is easier for learners as you
can fiddle about with each track of the pattern until it sounds right,
like typing words into a word processor and editing them until the
spelling and syntax is perfect.

Mastering Amiga AMOS

There are of course a number of disks of tunes available for you to
use in the public domain, and these are free for you to use (with a
credit obviously) in your own programs. There is another way to get
tracker tunes and that is from demos. Those exotic demo disks you
get from PD houses usually have a few tracker tunes hidden away
on them, but they are buried deep within the code as 9 times out of
10 they are coded in assembler. But if you have a Datel Action
Replay cartridge you can strip out the tracker music and save it to
disk. Then you have access to all the gorgeous samples and
arrangements that these guys use. Worth £50 for the cartridge l’d
say.

Converting
Once a piece of tracker music has been made, or produced, you can
convert it to AMOS ABK format and load it into a bank. The AMOS
disks contain many different converters to serve most of the
different kinds of editor, like Noisetracker, Soundtracker,
StarTrekker, Protracker, Games Music Creator, Sonix etc. All you do
is run these very clever little AMOS programs and they read in a
tracker file and spit out an ABK file onto disk ready to be loaded.
Some of these programs work fine, but the problem is that so many
of the tracker programs (being in the PD for some time now) have
all been revamped and rewritten so that they are marginally
different in format from the original programs. Some tracker tunes
will not play properly once they’ve been converted for some reason
and that is probably it. Either the tracker has a pattern length which
is variable and not fixed at 64, or it stores its samples in a different
way. Now if only there was a way to access one of those CLI based
player programs. Ah, but there is.
Converting has one benefit over direct playing and that is that the
track is marginally compressed. Playing trackers can be hazardous,
especially if the tracker you use is a bit out of the way like
StarTrekker. The best ones to use are MED 3.2 or Protracker 2.5 or
3.0 as these are the most stable.

Music Engine
A recent and very popular edition to the Deja Vu licenseware library
is Music Engine by Paul Townsend and all at Technical Fred
Software. This allows you to use tracker music without first having
to convert it. You see although AMOS hides the Amiga’s Workbench,
it’s still there somewhere (accessible still through the AMOS TO
BACK command) and if you have the right routines you can access
any program on the Workbench, including the CLI. So what this
program really provides is the interface between AMOS and the CLI.
The ability to play many different music file formats is achieved by

A
Z9
I-

.
I
'\

I
I.

‘".,¢.\-.l'-.FIT‘-I|'d'I'-‘Hf-I'll"P
2V

---'--'-n'n-i-b.£\LnTI'-'|'‘IX

fir

Music and Sound

running player programs which means you can hear the music
without having to convert them first to an AMOS music bank. This
program makes it all possible.
Once you’ve bought the Music Engine program from Deja Vu, you
are free to use the source code, if it’s for Public Domain, Shareware
or Licenseware use, providing of course you acknowledge the
source of your source (chuckle). If you want to use the routines in a
piece of commercial software however, then you have to contact
the programmers to arrange a suitable fee.
The program you are given is filled with useful routines to steal,
and although as a program it only allows you to play files and
samples that you have on disk (very useful if your tunes have all
got stupid names like mine), it is the routines that have made this
disk famous. Even the 3D requester used in the program, written by
Len Tucker by the way, reminiscent of the one used in Oxxi/Aegis
Spectracolor, has been borrowed by a number of recent releases on
the AMOS scene and is excellent so I'm not surprised.
The Music Engine gives you a handful of buttons on screen to
choose from. File selection can be set to Auto or Manual. in Auto
mode when you load in a tune the program senses what type of
music the file is. It seems to know Med, OctaMED, Soundtracker,
Sonix and AMOS. If the file type is recognised then a player will be
selected and an attempt (usually successful) will be made at playing
the tune.
The success of the tune playing depends on a few factors, like you
having enough memory to process the tune, and the correct file
type being recognised and/or selected. If Manual file selection is
active another screen will appear which gives you the option of
deciding what type of music you want to play. If the type is not
recognised, or recognised incorrectly, then the music will probably
just not play, but it may just crash the computer!
The Help button toggles the Help Mode and a message will be
displayed to show you if Help is currently active. When you’re in
Help Mode, further selection of any of the buttons on the screen
will display a short message giving you a reminder of what that
button does. Full manuals are supplied, so although the help
feature is nice, it doesn’t replace the docs on the disk. Music Engine
is a very powerful tool, and not just for driving music programs.
The trick is a very good one, and although it’s handy for music, it’s
powerful enough to run any program from the Workbench,
effectively making your AMOS system multitask with other
programs. For more details of Music Engine (disk number LPD79)
get in touch with Deja Vu Software at the usual address or write to:

Technical Fred Software, 117 Hilton Lane, Walkden, Worsley,
Manchester, M28 5TB. Phone or Fax: 061-703 7842.

Mastering Amiga AMOS

Sampling Your Own
Obviously if you're going to be using samples in your AMOS
programs you’ll be needing to glean some samples from
somewhere. You can pick up disks full of samples from PD libraries,
but it’s much more fun and far more creative to make them
yourself, which is much easier than it sounds. In fact it takes longer
to explain it than it takes to do!
Sampling is just a means of recording sound using the digital
memory of the computer rather than a tape machine. The sound is
stored digitally in the computer, and after recording, the sound can
be edited and replayed. To sample sounds with your Amiga, all you
need is a sampler, a microphone and a piece of sampling software.

Samplers
There are three samplers I use, and each one has its own merits.
The first two are Stereo Master and AMAS 2, both by Microdeal.
Stereo Master is the cheaper of the two, and although they use
practically the same sampling software, AMAS is also a MIDI
interface and comes with its own microphone. The other one I use
is the Perfect Sound 3 program and hardware, which is simple to
use and very good quality. It also has the benefit of full size audio
jacks on the back, which saves you having to shell out for the usual
adaptors and stuff like that.
To sample the sound all you have to do is provide an input, either
your voice over a microphone or a tape from a video or record, and
sample it. (Do of course bear in mind that taping/sampling records
or videos is an infringement of copyright.) The sample turns up on
the screen as a wavy line, representing the highs and lows of the
sound. You can then edit that sound, as if you were cutting out
pieces of the tape and rearranging them. When the sound is just the
way you want it, you can then save it to disk.

Music and Sound
 |

Figure 16.1. AMAS Sound Sampler.

Using Samples in AMOS
Using sampled sounds in AMOS is easy, and similar to the use of IFF
picture files, in the way you can load them in form disk as they are
or use them from a bank. You need an AMOS program called Sam
Maker, and this allows you to load samples and put them together
into a bank in memory. I use the one that comes with Easy AMOS, as
I find this to be the easiest and most stable to use, although you
might prefer to stick with the one given away with AMOS. lt’s up to
you.
The drawback with loading samples from disk is that you have to
BLOAD them and specify locations in memory and all that, which is
a little bit technical, not to say a touch heavy on memory and
resources. lt's far better to store them in a bank as they are ready to
access at any time during your program, and they are loaded
instantly.

Mastering Amiga AMOS

Once you have your samples in a bank you can play them back at
any speed, which changes the time the sample takes to play and
thus the pitch of the sample. So you can either have samples of
speech, snatches of music, or even single notes of an instrument
which you can play in a tracker at different pitches.
As I said, playing samples in AMOS is easy. You use the SAM PLAY
command:

Sam Play V,S,F

The voices your sample will use are chosen by setting a bit in V,
like so:

961000 voice 3
951010 voice 3 and 2
951111 voices 3, 2, 1 and 0

This is all very well documented, but here’s an idea for you. The
Amiga has four voices, and these are paired to play in either the left
or right stereo channel. Voices 0 and 3 play through the left
speaker and 1 and 2 play through the right. If you want to pan a
sound around in the stereo spectrum you have to alter the volume
across the two stereo channels of the same sound. (This is called
mixing.) To clarify that, a sound appears in a certain position in the
stereo picture, depending on how quiet or loud it is in each ear. A
noise which is soft in the left ear and loud in the right will appear
to come from right of centre in front of the listener.
So in order to simulate stereo panning in an Amiga sound, all you
have to do is put the same sound in both speakers and alter the
volume of one or the other to move the sound in space! Let's try
this out:

Rem * Stereo Panning.AMOS *

Rem

Screen Open 0,640,320,16,Hires

Hide : Curs Off : Paper 0 : Cls 0

Load "AMOS_Data:samples/samp1es.abk"

Sam Loop 0n

Volume %10,0 : Volume %1,50

X=1

Music and Sound

Locate ,5 : Pen 4 : Centre "This is a sample of
Stereo Panning..."

Locate ,7 : Centre "Notice how the sound moves from
left to right.“

Do

Sam Play %11,3

PANIT

Loop

Procedure PANIT

P1=0 : P2=50

Repeat

Volume %10,P1 : Volume %1,P2

Wait 25

Inc P1 : Dec P2

Until P1=50

End Proc

After all the usual setup jazz, we load in some samples from the
AMOS Data disk. If you don’t have this in the drive it’ll prompt you,
because I've specified the exact disk name in the LOAD statement.
Then we turn SAM LOOP ON to make the sound continuous, and so
make it easier to hear the stereo panning. Next we set up the initial
volumes of the two voices we'll be using, in this case voices 1 and
2, indicated by the binary codes %-0001 and %0010. This sets the
volume so that the right channel is silent and the left is set at 50.
Then the PANIT procedure increments the right and decrements the
left at half second intervals until the sound has travelled fully from
left to right. Crude but effective.
If you were very clever you could even have another sound panning
the other way too, but l’ll leave that one for you to play with.

| Rem

Mastering Amiga AMOS

Using the Sound Chip
Samples tend to be how most people use the Amiga’s sound making
ability, but there’s a brilliant synthesiser chip in there too. You can
use it with SET WAVE, or WAVE and then play the notes in the
instrument or sound you've created using PLAY:

Rem * Power Sound.AMOS *

Screen Open 1,640,200,16,Hires

Paper O : Pen 4 : Cls 0 : Curs Off : Hide

| Wave 0 To 15

Locate ,0

NOISE

Wait 50

Locate ,2 : Centre " Welcome to AMOS Power
Programming" : Bell

Wait 50

Locate 0,4

NOISE

Procedure NOISE

For L=79 To 0 Step -1

Play 96-(20+(L/2)),O

Print "*“;

Next L

End Proc

Wait Key

SET WAVE is the command you use to create your own sounds, and
the sound numbers start from 2, as 0 and 1 are already defined.
Wave 0 is defined as noise for explosion effects. Wave 1 is a pure
sine wave for flute and other whistling effects. After that it’s up to
you to create your own. Like this one created using the SIN function
to combine sine waves.

Music and Sound

Hem * Setwave.AMOS *

Rem

Hide : Curs Off : Cls O

Pen 4 : Paper O

Locate 0,0 : Print "This is the wave you are hear-
ing..."

S$="" : Degree

For S=O To 255

V=Int((Sin(S)/2+Sin(S*2+45)/4)*128)+127

S$=S$+Chr$(V)

Plot S,V

Next S

Set Wave 2,S$: Wave 2 To 15

For N=0 To 10 : Play N,10 : Next N

Print "...and now a bit higher!"

For N=20 To 30 : Play N,10 : Next N

Print "Ahh sweet music!"

Wait Key

If you can draw a wave on the screen using plot, you can create that
same wave as the basis for an Amiga sound. Try and create a square
wave and even a triangular wave like a sawtooth.

Noisy Drums
The noise wave can be used to create an explosion effect, but like
most percussive sounds it’s tuneless but has a certain rhythm. Try
this noise based drum set for size.

Rem * Drumset.AMOS *

Rem

Flash Off : Curs Off : Cls 0
Pen 4 : Paper O

Centre "Play the drums by pressing keys..."

Mastering Amiga AMOS

Locate ,2 : Centre "I particularly like the function
keys"

Noise To 15

Volume 15,63 : Mvolume 32

Set Envel 0,0 To 1,63

Set Envel 0,1 To 10,0

D0

Repeat : A$=Inkey$: Until A$<>""

Exit If A$=Chr$(13)

S=Scancode

If s>o and s<9s Then Play s1oo,s,o
Loop

The Scancode function returns the value of the key being pressed
and passes this value to the PLAY function. Obviously if you were
clever you could contrive to not only store a different sample for
each key instead of an internal sound, but also make it so that
every time you pressed a key it stored the rhythm in a file that you
could play back. It's a do it yourself drumbox!

Sound Advice
The possibilities for sound production on the Amiga are greater
than for just any other machine. Using samples you can create
music that sounds professional even if you aren’t. Go out and get
yourself a tracker program and a sampler, and see what the
dimension of sound can do for your programs.

Contact
MED and OctaMED are available from:

Amiganuts United,
12 Hinckler Road,
Southampton,
SO2 6FT.

g
er
1 7:
IIO and
Disk Ops

Although AMOS programs will
spend most of their time
being loaded and run, some
programs are bigger than that.
Sometimes you need to load
and save, do disk directories,
and all manner of other disk
based input/output (or more
commonly I/O) commands. It
may be that even though
you’ve had your Amiga around
for a while, you might not
know what all this talk about
files and directories is all
about.
Disks are organised to provide
space for files, pictures or text
from programs that you use.
They store them in an
organised way so that they
can be retrieved by the
computer when they are
needed. The structure is often
described as being like a tree:
a main or root directory, with
a number of subdirectories
branching out from the main
stem like the branches. So the
main directory has a list of all
the subdirectories, and each
step along the directory tree is
described by using the /
symbol. This description as to
where files reside on the disk
is called the path. Imagine you
have a disk called DOCS, and
on that disk is a directory
called LETTERS, and another
one called ARTICLES. Inside
letters you have a file called
MUM.TXT which is a letter to
your mother, and inside
articles you have a file called
REVIEW1.TXT. To describe to
the computer where the files
are you would type the
following paths:

Mastering Amiga AMOS

docs:letters/mum.txt

docs:articles/review1.txt

Any standard guide on AmigaDOS, (like Mastering AmigaDOS 2 by
Bruce Smith and Mark Smiddy for an obvious example) will tell you
everything you need to know about this kind of operation, from an
AmigaDOS point of view that is. From an AMOS standpoint, we can
do our own disk operations and manipulate files on disk for use in
our programs.

Disk Ops
In AMOS programs we can direct the computer’s attention to a
particular disk or drive so thatfiles needed by the current AMOS
program can be found and used, like IFF files, ABK files and so on.
The Amiga uses a system of what are called devices, as you
probably know, and these are denoted by the use of the : symbol.
You can specify a drive number like df0 or dfl by the system:

df0:
df1:
fh1:

etc. This looks at the drive mentioned no matter what the name of
the disk is. If you want to get files from a specific disk, then you
can use the colon symbol to ask for it using the volume name, like
Hus:

MyDisk:

AMOS_DATA:
Workbench:

If the disk you need for the program isn’t in the drive, a prompt will
pop up asking for that disk by name. Or you can specify a logical
device, not a real drive but an assigned directory, hardware port or
system folder. These are all examples of this kind of device:

RAM:

PRT:

CON:
SYS:

LIBS:
FONTS:

I/O and Disk Ops
—

Using the DIR command, you can get a directory of the currently
selected path, or even specify a path to look at like so:

Dir
Dir "df0: "
Dir "AMOS_DATA:"
Dir "AMOS:IFF/ "

You can also add the /w switch to the command to list the files in
two columns down the screen to save space.
This command is primarily for use in Direct mode, when the
directory will be displayed on the current screen, usually the
default brown screen.But most often you’ll be wanting to direct the
attention within AMOS program to a specific drive or disk using the
Dir$ command. In most cases, if your program is to be used by
someone else, you’ll direct the attention of the computer to the
boot drive:

Dir$="df0: "

Which means that the program will always look at that drive to load
any programs, files or data that it needs.

Running AMOS Programs
To make programs that are more excellent and bigger than single
one-off programs, or to incorporate programs which you’ve written
before, you can do one of two things. Firstly you can merge the
code with the new program. Or more simply you can load and run
the program from disk using the RUN command. This is the slower
of the two options as you have to wait for the disk to access and
stop before the program runs. If you incorporate the program with
the current program, then it will obviously be runable without any
wait for loading. But for things which are not time based, the RUN
option is useful.
To use it you simply have to put in a line like this:

Run "df0:next_level.AMOS"

and the program specified, in this case a fictitious program called
next_level.AMOS. Although there are time penalties, this feature
does mean that even if you have used up all the available memory
for a program, you can load another program (a level in a game for
example) which will replace the one currently running. So any
programs you write can be as large as the disk they come on. And if

Mastering Amiga AMOS

you distribute the program on many disks and write an installation
program to install all the files on a hard disk, well the sky's the
limit.

Disk Files
Something which I personally don't like, although some people
from the business programming and archaic BASIC communities
will disagree, is sequential files. This is something which enables
you to open files directly on the disk, add to them and close them.
It's a hazardous business and not something to be taken on lightly
if you're a complete beginner, but I'm including a little bit of detail
about them here for completeness. The full details about sequential
files are to be found in your manual, but as ever I'll take it as read
you've digested that but can't really think of any applications for it.
Although sequential files themselves are fairly outside the
mainstream of your interest in AMOS, I would say they do offer
some interesting facilities in the form of ports and channels (what
we used to call streams in the old days) and should be studied for
those. Working with channels and ports is something I thought I'd
left behind years ago on the C64, but here they are again large as
life. The primary use for these types of file is in the manipulation
of data, especially ongoing data to be added to or edited in some
way, like a database program or something like that. They are an
amazingly slow method of storing things on disk however, as they
are sequential as the name suggests, serial, or one after the other,
meaning the data is stored in a specific order, like the music on a
cassette tape. To get to a certain point in the data, say in the
middle, you have to plough your way through the rest of the data to
get to it. There are more interesting ways to store data, but like so
many AMOS features this was added to make it all things to all men.
Anyone who's been used to using sequential files on another
computer in another BASIC will be right at home with this set of
commands, and this will enable you to convert your regular
AmigaBASIC or other inferior BASIC into AMOS in no time.
A similar concept to sequential files is random access files, and this
too is more than adequately serviced in the AMOS manual so I won't
talk about them any more. A more useful twist on opening channels
for output can be found later in this chapter under Outside AMOS.
Okay, next I/O hint, please.

Yes We Have No LLIST
Or bananas either, but that's an old joke and I won't dwell on it.
That's right, no LLIST. This command was put into early versions of
the manual but later some commands weren't included for various
reasons, most of which had nothing to do with the usefulness or
otherwise of the commands. It would have been handy to have it,

I/0 and Disk Ops
 |

but that's the way it goes. Software development is a job for real
men. If something isn't right or doesn't fit, cut it out, that's what I
say.
Of course to do a LLIST or even a LPRINT you can Select All using
<Ctrl-A>, and print the block (containing as it happens everything)
if that's what you want to do. I suppose if the worst comes to the
worst you can always save the program as ASCII, send AMOS TO
BACK and use the AmigaDOS command:

COPY <file> T0 PRT:

or similar.

Scancode
We've covered a lot of output in this input/output chat, but not
much input. You probably know about CHR$() and all the ASCII type
codes for keyboard entry. (If you don't, you'd better find out about
them really soon, as they are a great bonus.) For one slightly more
out of the way method of grabbing keyboard input, especially hard
to grab keys like the function keys, you'll need to use the Scancode
command.
Instead of reading the keys pressed from their ASCII number, you
may need to read a key which doesn't produce a character when
pressed. So you have to resort to pulling the internal scancode from
the keyboard hardware itself. In combination with the Key Shift
command, you can test for any key on the Amiga keyboard, shifted
or unshifted, producing a character on the screen or producing
nothing.

Outside AMOS
We've seen the AMOS program sending data to a CON: device. The
same thing can be done to other Amiga devices using logical ports.
Ports is a concept familiar to any of us who used a Commodore 64
before we used an Amiga. Opening ports, sending data down them
and closing the ports again was the only reliable way to print stuff
out most of the time! Now ports have made it possible for the
Amiga to talk to the outside world too.
You can access parts of the Amiga usually outside of the control of
AMOS, too, using ports. Using the Open Port command you can
send data or control strings down the serial port, parallel port and
printer device, or to any other Amiga device. This example shows
us that you can make the AMOS program drive a Prefs printer:

Mastering Amiga AMOS

Rem * Open Port.AMOS *

Rem

Open Port 1,"prt:"

Set Tab 5

T$=Tab$

For X=O To 10

Print #1,T$;"Mastering AMOS is a breezel";T$;
"with Mastering AMOS“

Next X

Close 1

First a port is opened, and it's assigned to open the PRT: device or
the printer. We set up the tab spaces, and then do a For Next loop
which goes from 1 to 10. After that we print the words, but instead
of printing to the screen, the words are printed to port 1. The
words fly down the pipe and come out on the piece of paper you
threaded into the printer. (You did put a bit of paper in the printer,
didn't you?)
Ports are a two way thing, and you can read data in as well as feed
it out. Using this method you could write a program to drive your
serial port, like a terminal program for example. A terminal
program is just a simple method of reading and writing to the serial
port, once the port is connected to a modem of course. The
information is read down the port and put on the screen, and
information from the keyboard is taken and sent up the port. If you
want to connect to anything a little non-standard using AMOS, then
ports are the way to do it.

APS
Using ports with AMOS might not always have predictable results,
especially if you are attempting to send/recieve files using parallel
or serial transfer. You are perhaps better off using a terminal
program, as the implementation of ports for AMOS is not really the
best way of doing things like that. Sending and receiving text is OK
but files, no. You start getting into machine code territory, so for
beginners this is best left alone.

g
ea
1 8:
Advanced
AMOS

Once you've been working
with AMOS a little bit you'll
want to move on from just
banging out games to touch
on a few things which are a
little more advanced. This is
what this chapter is about,
how to push the envelope, as
they say in California, which
is a laid back way of saying
let's see what we can do if we
change the rules a little bit.
Some of the things I'll be
talking about in this chapter
may be a little bit over your
head, and that's fine. I don't
expect you to be an AMOS
expert, you wouldn't have
bought this book otherwise,
would you? What this book is
really about is showing you a
lot of what's possible and
giving you the ammo to take
things a little bit further
yourself, if you want to.
A lot of things have been
added to AMOS since the first
revision, like for example the
interlace mode we spoke
about in an earlier chapter.
One of the biggest additions
to the system is the ability to
multitask, which not only lets
us create Workbench based
applications but it also allows
us to have a more flexible
working environment. This
means we can basically have
AMOS up and running in the
background and be working
on some AmigaDOS task at the
same time, like formatting

Mastering Amiga AMOS
L

disks, looking around directories and generally improving our
productivity by having two programs available at once at the toggle
of a button.

Multitasking with AMOS
The Amiga is a multitasking computer, of that there is no doubt,
but AMOS has always taken over the system so you couldn't get at
anything else while coding. Now AMOS has multitasking you can
flip back and forth between the editor and AmigaDOS at the touch
of a button. Pressing <Amiga-A> (okay, that's two buttons) switches
you in and out of AMOS and the Workbench without the annoying
blank screen. As a consequence the following commands have been
made possible.

Amos To Back
Hides AMOS from view and shows the Workbench. This will bring
forward the Workbench display, allowing you to access other
programs, format disks and even run AMOS again. (Although you'd
have to be mad to try that.)

Amos To Front
This switches back the AMOS Editor to the front of the display.
AMOS is forced back onto the display with this command, leaving
the Workbench hidden.

AIIICS HOPE

This is a sort of trap, which tests if AMOS is around. It returns TRUE
if AMOS is currently displayed and FALSE if the WORKBENCH is on
view.
You also have access to the AmigaDOS file requester too. Although
the price of this flexibility is a small problem.

Request/Request On
will make AMOS generate its own requester routine and is the
default. This happens if you don't type anything at all.

Request Off
This changes the situation and AMOS will always select the CANCEL
button of the requester if this command is used. The actual
requester will not be displayed, so this is ideal for error trapping
within a program, especially if you want to add your own requester
of some kind, even a nice 3D one like Len Tucker's.

Advanced AMOS
 |

Request WB
This tells AMOS to switch back to Workbench's system requester.
You'll come back to AMOS as soon as you have chosen one of the
options.
If you don't load the requester up (by deleting it from the extension
list in the config file), the normal Workbench requester will be used
for displaying messages. This does have a slightly confusing side-
effect though, AMOS will seem to have crashed when a requester
appears. If this happens you must simply press <Amiga-A> to
return to Workbench, answer the question and press <Amiga-A>
once again to return to AMOS. It's only best to avoid loading the
requester when memory is very low!

Machine Code
There are many ways that the more experienced programmer can
access the important little places on the Amiga, and the machine
code programmer has been more than catered for. The commands
which you'll need to look at first are PEEK, POKE, DEEK, DOKE, LEEK
and LOKE, which will give you access to bytes, words and
longwords in all the memory locations on the Amiga. (Don't bother
thinking about making your own assembler, because Gary Symons
already did that. See below.) Hex to Dec conversion is simple with
the HEX$ and BIN$ functions:

Rem * Hex/Bin converter.AMOS *
Rem

Screen Open 0,640,200,16,Hires
Paper 0 : Cls 0
D0

Input "Number to convert: ";A
X$=Hex$(A)
Print "The hex version of this number is: ";X$
Y$=Bin$(A)
Print "The binary version of this number is: ";Y$
Cdown

Loop

A handy little programmer's tool that, especially for the creation of
graphics and bitmaps from scratch. (Find that pad of graph paper
you used to have. It may save your life!)

Mastering Amiga AMOS

From there on it gets kind of hair-raising, so we won't dwell on it.
But if you are a machine coder, you will want to know about AMOS
Assembler.

AMOS Assembler?
Yes, I'm afraid it's true, on AMOS PD disk LPD9 and free with AMOS
Compiler, the AMOS Assembler, for those of you out there who are
not just any old AMOS beginner. Some people (and who can hold it
against them) have a little knowledge of machine code. It happens.
If this is the case. you don't need to discard all that knowledge
simply because you've taken up the obvious charms of the AMOS
language. Now you can combine AMOS and machine code for fast
and effective programming. Make some routines containing things
that AMOS can't do and incorporate them with your AMOS
programs. Add nice fast rendering routines, and pep up any area of
AMOS which doesn't quite have the speed you were looking for. Or
perhaps you don't know machine code (like me for example) but
you think that sooner or later you might learn it. This is a fine way
to use your new knowledge, and with very little hassle. Adding
small bits of code as you learn makes using AMOS a tutorial process
as well as a creative one.
The AMOS assembler was written by Gary Symons, and it's a very
clever little suite of programs. The tricky thing about AMOS
Assembler is that you just embed the machine code you want to run
in your program, like AMAL:

C$=C$+"Example:“
C$=C$+"move.l a3,a5;"
C$=C$+“add.1 #4*4,a3;"
C$=C$+"move.l (a3)+,d0;move.l (a3)+,a6;"
C$=C$+“move.l #4,d6;"
C$=C$+"lea plane_0,a0;“
C$=C$+"lea plane_1,a1;"
C$=C$+"lea plane_2,a2;"
C$=C$+"lea plane_3,a3;“
C$=C$+"1ea plane_4,a4;"
C$=C$+"move.l #319,d1;move.l #255,d2;"
C$=C$+"loop:"
C$=C$+"movem.l d1/d2,-(sp);"

Advanced AMOS
 .

C$=C$+"btst #6,$bfe001;bne.b no_quit;movem.l
(sp)+,d1/d2;rts;“
C$=C$+"no_quit:"
C$=C$+"add.1 4(a5),d1;add.l (a5),d2;"
C$=C$+"move.l d1,d3;muls d3,d3;lsr.l dO,d3;"
C$=C$+"move.l d2,d4;muls d4,d4;lsr.l d0,d4;"
C$=C$+"move.l #0,d7;"

and so on and so forth. (Don't try running this program by the way,
because it needs more code to function. It's just an example to give
you an idea what you're looking at when I talk about machine code
programs.) All the lines are read in as C$ and then the assembler is
activated, and the code you typed in is assembled and run. The
demo programs are short, and to be honest I can't tell how it works,
not being an ace assembly programmer myself, but you can take it
from me that it's totally brilliant and the effect is mind boggling.
The basic program to get you going is included, and a bunch of
example programs to demo the speed of the thing. The results are
nothing less than gobsmacking, especially the fast mandelbrot
program. (Okay, so fractals are usually boring, but not this fast
they're not!) If you like assembler, then this is the PD disk for you.
One thing I would like to see is a C compiler written in AMOS, or an
AMOS to C converter! Now they really would open a tin of worms.
But I guess we'll have to wait for that.

Speech Demons
Speech is another little used area of the AMOS system, which bears
a little experimentation. You may have used your Amiga’s speech
before, perhaps with the little SAY demo on your Amiga disks
(unhappily removed from more recent releases). Well AMOS is
capable of using speech too. The speech capability is simple but
effective, having only two commands SET TALK and SAY.
How about this little speech toy of my own. Imagine your computer
has had too much to drink, but like most drunks is trying to ignore
that and talk to you anyway:

Mastering Amiga AMOS

Rem * Drunk computer.AMOS "
Rem
Screen Open 0,640,200,16,Hires
Paper 0 : Curs Off : Cls O
Locate ,1O : Pen 4
Set Talk ,,65,50
Print "I've had a few drinks, but I'll try to talk
for you..."
Cdown

Do
Input ">";A$
Say A$

Loop
Anything you type into the computer will be spoken, but the speech
will be slow and slightly slurred. Very realistic. In fact it might be a
scientific breakthrough! Yes, a computer program that drunk people
can understand, a sort of text to inehriated person filter.

Sorting and Storing
Databases are easy to sort out. The following program is simple in
concept and function, being able to accept a series of names and
phone numbers, and sort them into alphabetical order, and allow
you to access them using the mouse to step through each entry.
Not so much a database, where retrieval and fast access to all
entries is a priority such a program would run to about 10 pages
worth of code. This program is just the bare bones of a program,
and uses "arrays" to store and manipulate the data (the names and
numbers) that we input at any one time.

To sort the names and numbers we use the SORT keyword, a
unique addition to AMOS which will sort the contents of an array
from lowest to highest so 3, 5, 4, 2, 1 becomes 1, 2, 3, 4, 5 and B, E,
C, , D, A becomes A, B, C, D, E. This example generates random
letters and then sorts the into alphabetical order:

Screen Open 0,640,200,16,Hires
Dim N$(25)
Locate 0,0
For A=O To 25

N$(A)=Chr$(Rnd(25)+65)

Advanced AMOS
 !

Print N$(A);" ",
Next A

Sort N$(0)
Locate 0,5
For B=O To 25

Print N$(B);" ",
Next B

Which is how the sort works. Sort is very fast, sorting 50 entries in
about 0.22 seconds, on an un-accelerated A2000. Once you
dimension arrays, fill them with text and sort them into
alphabetical order you can search them using the MATCH keyword,
and print out the results of your search.

Are you DIM?
Arrays are very useful variables which can store large amounts of
data which is somehow linked. Arrays are best thought of as pigeon
holes at a post office. Before you can start loading data into an
array you have to dimension it. Arrays can have as many
dimensions as you want them to, for example if you type:

Dim N(10)

you will have created an array with 10 locations ready to be filled.
Imagine a row of 10 empty boxes waiting to have something put
into them. If you type:

Dim u(1o,1o)
Again a row of ten boxes, but this time you should picture a row of
boxes 10 wide and 10 deep, containing 100 locations in which you
can put data. So if you type:

Dim u(1o,1o,1o)
You have a 3D array with 10 wide, 10 deep and 10 long, or a huge
cube. (Note: It's a bit hard to imagine a pigeonhole system which
would enable you to put anything into the boxes in the centre of
the cube, but this is computing, where anything is possible!) That's
10x10x10 boxes which equals 1000 locations into which you can
put data.
In these examples you can only put numbers into these arrays, as
they have no $ symbol after the name. So for names and numbers
you should dimension an alphanumeric (characters rather than
numbers, think alphabetic) array like so:

Mastering Amiga AMOS

Dim N$(10)
for 10 names. Simple. The same rules for normal variables apply.

DataBank
Those little DataBank watches and calculators are great fun, and
very handy if you've got the recall of a goldfish. Rather than write
down all your phone numbers you can load them into these units
and they are automatically sorted into alphabetical order, and you
can step through them using the back and forward keys on the
front of the unit.
The program below is a Databank simulator, which performs all the
same functions of these units using AMOS. In order to create a
simulation of these items we have to first think about how the
program will look on the screen. As we haven't loaded in any
graphics screens, we'll have to create our on screen graphics using
AMOS commands. The screen is created using a procedure called
_DATASCREEN, which starts like this:

Procedure _DATASCREEN
The procedure is opened and given a name with an underscore
character at the front, so we can call the proc anything we like. Next
we set the paper colour to colour 8 of the default palette, which is
one of the three greys (colour 7, 8 and 9). and clear the screen:

Paper 8 : Cls
Next we set the ink colour to 2 (white) and print the title of the
screen at the top of the screen:

Ink 2

Print "Databank"

It's sort of small and puny, so let's zoom it up in size:
Zoom 0,0,0,84,8 To 0,60,10,319,50
Locate 0,0 : Cline

The ZOOM keyword takes an area from a specified screen and
magnifies it then places it on another screen where you say. In this
case we're zooming up and area of screen 0 onto screen 0. The first
0 is the screen we're zooming from, 0,0 is the top left corner of the
zoom area, and 84,8 is the bottom right. This invisible box encloses
the text we typed and prepares it to zoom. The next bit of the
command after the TO states that we are printing the zoomed area
to screen 0, and thistime the top left corner will be 60,10 and the
bottom right 319,50. After a little experimentation we found this
positioned the magnified area clear of the original text, and also

Advanced AMOS
 |

centred it on the top of the screen. After we've zoomed, we erase
the original text with a locate call to the top left corner of the
screen, and a clear line or CLINE command.
Next we draw the buttons. These sit at the bottom of the screen,
and their positions were worked out by dividing the width of the
screen by 7 and coming up with 45. The buttons and the spaces
between them are all multiples of 45 to give you three buttons,
evenly spaced. The height of the buttons is the difference between
170 and 190, the Y axis numbers on all three, which means that
each button is exactly 20 pixels high.

Ink 9
Bar
Bar
Bar
Ink
Box
Box

45,170 To 90,190
135,170 T0 130,190
225,170 To 270,190
2
45,170 To 90,190
135,170 To 190,190

Box 225,170 To 270,190

The buttons are first made by drawing a rectangle with BAR in ink
9, and then bounded by a box using BOX in ink 2. The text in the
buttons is done using graphic text, rather than the usual kind, to
ensure that the text can be positioned exactly in the box.

Ink 2,9 = Text 52,1a3,"<"
Text 152,1sa,">"
Text 233,183,"Ouit"

So the buttons are now graphically represented on the screen. In
order for you to be able to sense the buttons with the mouse, you
should set up zones around them with the SET ZONE command.
This is simply a matter of drawing an invisible box around the
buttons so that later you can ask the program to check if they are
being pressed. The zones are easy to set as the co-ordinates are
identical to those used to produce the buttons:

Set Zone 1,45,70 T0 90,190
Set Zone 2,135,170 T0 180,190
Set Zone 3,225,170 T0 270,190

Zone 1 is the button marked <, zone 2 is the button marked > and
the last zone is the button called Quit.

Mastering Amiga AMOS

These zones must be reserved at the beginning of the program for
them to work, so we have to add a short statement:

Reserve Zone 3

at the front. This allocates 3 zones for the use of the program.
Next we want to have a window in the middle of the screen. To
ensure that no text spills out of the window to spoil our screen
(should anything go wrong in the program) we can limit the flow of
text to an area of the screen called a window. First we draw a bar
and box for the window to sit on.

Ink 9
Bar 10,60 To 309,160
Ink 2
Box 10,60 T0 309,160

This sits on the screen in the centre below the title and above the
buttons. To limit the text to an area of the screen we open a
window within the area we've just drawn on screen.

Paper 6
Wind Open 1,20,65,36,11

The paper colour is set to 6 (blue) and we open window 1 starting at
screen co-ordinate 20,65. The window is set to be 36 characters
long by 11 tall. (If you wanted to have more information in the
window you have to SCREEN OPEN a hires screen before you start,
giving you room for twice as many characters.)
The next bit is a little special effect. The screen fills with random
text and then clears with the CLW command and prints up the
words “World Secret DataBank".

For NOISE=1 T0 500
Print Chr$(Rnd(25)+65);

Next NOISE
Clw : Print "< World Secret DataBank >"
Cdown
End Proc

Advanced AMOS
 |

And that is the basic screen setup. All the graphics commands were
arrived at by a mixture of thought and planning with a little bit of
trial and error thrown in for good measure. Try a box on screen and
see if it looks right. If it doesn't then go back to the editor and do it
again adjusting the figures a little.
The other procedure in the program is the _ENTERDATA subroutine,
and this simply takes the lines of data from the keyboard and
stores them in an array called NAMES$().

Procedure _ENTERDATA
Shared NAMES$()

This opens the procedure and tells the proc that the array NAMES$()
has actually been defined at the beginning of the program. All
variables are local to various parts of the program unless you
specifically tell the program that they are to be shared or global.
Next you take in the entries and store them into the array:

For ENTRIES=1 T0 20
Input "Input data: ";NAMES$(ENTRIES)

Next
Cdown

Centre "All data banks full!"
The array is filled by setting up a for/next loop and prompting you
to input the data. As the variable ENTRIES is incremented each time
the loop goes around, the next pigeonhole in the array is filled with
the next bit of data typed in at the keyboard. When the loop is
finished, when all 20 holes are filled, the computer should say that
all are filled. We do this simply by printing the line that all data
banks are full in the centre of the window. (Note that all screen
printing and centring commands are now referring to the window
and not the whole screen.)
So you have a filled array. This array is then sorted using the
command:

Sort unmsssto)
which sorts the named array from smallest to largest. All your
entries, the names and numbers are sorted by the first letter. You
must be sure to add no punctuation to the entry or any odd
characters just in case this disrupts the sort procedure. Every entry
must be on a single line.
All that remains is the main body of the program, which runs
everything. Having set up the screen and entered the data you are
ready to use the DataBank for accessing names.

Mastering Amiga AMOS

As well as the reserve zone line, you also have to dimension the
array NAMESS and set a variable called choose to 0.

Dim NAMES$(20)
CHO0SE=0

Follow that with calls to the procedures we've written:
_DATASCREEN
_ENTERDATA

then we're ready for the main loop. At the start of the main loop, we
have a little series of tests to see which button on screen we have
clicked on with the mouse.

If Mouse Key and Mouse Zone=1
Dec CHOOSE

End If
If Mouse Key and Mouse Zone=2

Inc CHOOSE
End If
If Mouse Key and Mouse Z0ne=3 Then End

If the left mouse button is pressed and the mouse pointer is in
zones one or two, then the variable CHOOSE is INCremented
(added) or DECremented (subtracted) to give us the next or
previous entry in our little database. The following lines:

If CHOOSE>2O Then CHO0SE=2O

If CHOOSE<1 Then CHO0SE=1

check to see if the entries we've chosen push the CHOOSE variable
above 20 or below 1, which are both outside the array's range. If
this is the case then the variable is stopped at the lowest point.

Locate 1,5 : Cline : Print NAMES$(CHO0SE)
Now we come to the line which prints the chosen entries on the
screen. Each time the loop goes around the cursor locates to
location 1,5, clears the line and then prints up the current entry. AS
you inc and dec the CHOOSE variable with the on screen buttons,
the entry changes.
A 20 click wait is put in the end or the loop goes around too fast
causing a flicker. This means to have to let your mouse linger on
the button before the button press gets sensed by the loop, but it's
a small price to pay for a more controllable loop. Wait 20 is only

Advanced AMOS

2/5ths of a second though, so I shouldn't worry too much. (A better
method is to set a flag, like in my Blaster.AMOS program, which
reads a button then turns a flag off.)

Wait 20
Goto MAINLOOP

The last line sends us back to the label MAINLOOP, and the entire
process starts again. The button is sensed, and the choose variable
is moved back and forth.

Program Enhancements
The program can be improved in a number of ways, which you
might like to try and do yourself as an exercise. Firstly you can use
the MATCH keyword to search for a certain letter at the beginning
of the entry, so you could load up all the entries beginning with S,
for instance.
Also you could load a graphics screen with a more exotic design on
it. You could also add more buttons for more functions, like time
and date, and also add a loading and saving numbers feature to
save you having to type them in all the time, or how about
automatically loading the numbers on startup and automatically
saving them (along with any new ones) at the end?
The loading and saving arrays is achieved by saving the array data
as a file to disk, or loading it FROM disk into an array. The simplest
way of doing this is to use the sequential files feature (which I'll be
going into at a later date). If you want to go ahead and try it
anyway, read the bit in the AMOS manual about sequential files.
You just open a channel to the disk:

Open Out 1,"names.seq"
For A=O To 20

Print #1,NAMES$(A)
Next A
Close 1

and do a for/next loop to print the entries to the disk, not
forgetting to close the channel after you've visited the disk.

Mastering Amiga AMOS

NEO Converter
So you've got a complex technical problem. AMOS to the rescue.
The problem here was having a number of Atari ST low resolution
pictures in the NEOCHROME format, which needed to be converted
to IFF. There are a few picture converters on the market, but few
will do this particular job. Enter AMOS and a clever little routine.
The original program was written by a very clever chap called Terry
Mancey, and the original version before I got my hands on it and
adapted it to my needs was originally printed in the All About AMOS
magazine. Since I edited this program I've seen a number of other
file converters and all of them use a similar technique to grab the
file, put it to the screen and save it off. Here's the listing:

Rem * NEOchrome to IFF Picture Converter *
Rem
Screen Open 0,320,2O0,16,L0wres

. Flash Off
Curs Off
Reserve As Work 10,32128

PINKY:

Show
F$=Fsel$(“*.NEO","","Load Your NEO pic")
Bload F$,15
Hide

- GROWNEO[15]
| Bell = Wait Key

Show
F$=Fsel$("*.IFF","“,"Save Your IFF pic")
Hide
Save Iff F$,O
Bell : Wait Key
Input "Convert another NEO picture? (y/n)“;A$
If A$="y“ Then Goto PINKY

End

Advanced AMOS
IIIIIIIIIIIIIII

Procedure GROWNEO[B]
PALT=Start(B)+4
For C=0 To 15

C0lour(C),Deek(PALT+(C*2))*2
Next C

PICT=Start(B)+128
For Y=O To

For X=O
Doke
Doke
Doke
Doke

199
To 19
Phybase(0)+(X*2)+(Y*40),Deek(PICT+0)
Phybase(1)+(X*2)+(Y*40),Deek(PICT+2)
Phybase(2)+(X*2)+(Y*40),Deek(PICT+4)
Phybase(3)+(X*2)+(Y*40),Deek(PICT+6)

Add PICT,8
Next X

Next Y
End Proc

When the program is run the Load requester will appear. Select the
first NEOCHROME image you wish to convert, and either double-
click on its name or type it in and click OK. The file will be read in
and scanned onto the screen. A bell will sound when the conversion
is finished. Press any key and the save requester will pop up. Type
in the name you want the file to be saved as, preferably appended
with the .IFF extension to distinguish it from the NEO version, and
click on OK. A bell will sound when the file has been fully saved.
Press any key and the program will prompt you to type in a y or n if
you want to convert another NEO image. If you type a y then the
whole process starts again with the load requester. If you type a n,
the program will terminate.
The drawback of the program is that it won't as yet convert or
display high res Atari pictures, or any other format other than NEO.
Obviously you can do hires if you change the format of the way the
files are read. The technique is here for you to see, and all you'll
really need to make it a universal converter program is the right
size buffer to take the input pictures and the technical specs of the
bitmap files in question. That takes a lot of research and a lot of
programming time, but I'm sure you can do it! (Smile.) As long as
you can print the bitmap to the screen, you can save it off as an IFF.
This is a big project, so good luck.

asterin Ami aAMOS9 9

Onwards to the Future
So there is life after basic AMOS. And there are still more ways you
can press the boundaries of what's possible. And this is mostly
done with AMOS in concert with other things like AMOS 3D and
AMOS TOME, and like our next example, the AMOS Compiler, which
contributes more to the overall power of what can be done with
AMOS than just about any other extension to the language. Strap
yourself in, you're in for a fast ride.

ea
1 9:
AMOS
Compiler

One of the most exciting
developments since AMOS
itself was the release of the
compiler package, enabling
you to compile your AMOS
programs into near perfect
machine code. As the early
forerunner to AMOS (a
program on the Atari ST called
STOS) had an excellent
compiler, the AMOS Compiler
was waited for with much
impatience by the Amiga
community at large. Well it
arrived, and in case you
haven't read any old reviews
of it, you'll be thrilled to know
that it’s brilliant.
The compiler itself exists in a
simple CLI command called
acmp, which you can in fact
just type at a CLI or Shell
prompt and pass it some
parameters (I'll tell you a bit
about this in a minute.) Or you
can boot up an AMOS program
called Compiler.AMOS which
is a graphic front end for the
compiler, allowing you to
compile your programs with a
simple click of the mouse.
(See Figure 19.1.) The whole
shebang is run from an
extension to the basic AMOS
language and, as with all
extensions, it needs to be
installed before it can be used.
Programs compiled with AMOS
Compiler can be run from the
CLI, the Workbench, or even
from within AMOS. Why
should you want to run a
compiled program from within
AMOS? Well, you can run
AMOS programs from within
an AMOS program, loading
and running another segment

Mastering Amiga AMOS

I'-|71'
~.J}'.1 -.-"I-Itr1

|8
1:U -~'I.*;-."'§.- .“\€"

I = I I‘:1= I U1-El

1 -_|-I.‘ ___ '-_ I‘ -.__'|1l'I-.___..'|-'-...__l‘|-H H‘ 1-_|_l -.____.~L H H "|\.\.'l.‘_ll~L 1 1‘ .,_ :5

.I" . .11 ' .|I' I. TI |_.I' F

it I“tztrr ‘D
.

Figure 19.1. Cornpiler.AMOS front end of compiler.

of a game for example. Well, if this segment of your game is
compiled (for reasons of speed or secrecy) then it'll be pretty rapid
and safe. The other two types of compiled programs can be almost
anything, and although there are certain limitations as to what you
can compile with AMOS Compiler, most things will compile and run
properly. Compiled programs are a lot faster than the normal AMOS
counterparts, and AMAL is to a certain extent made obsolete once
you have Compiler installed. Having said that, AMAL will run from
compiled programs, although the AMAL sections are already
compiled so they won't run any faster. You have to pay attention to
certain simple timing errors, where the animations get out of sync
with screen blanking, but I'll advise you on that a little bit towards
the end of this chapter.

Compile Me
The beauty of the compiler is that you don't need any expert
knowledge to run it, and the product of the compiler improves the
performance of your programs by three or four fold. What's the
catch? There has to be one, and the major catch is that in the main
compiled programs are much larger than their AMOS counterparts.
There is a certain amount of runtime code which is permanently
welded to the program when it's compiled. This allows the program
to be run on its own without any of the AMOS program or any
libraries having to be present on the disk. This is a trade off, and
it's unavoidable. One thing you can do is compact the program with
a PD program called PowerPacker. This means the program is

AMOS Compiler

compressed by the PowerPacker program, and then later your
compressed program auto-unpacks when run. PowerPacker is
available from your local PD library.
The Compiler comes with two disks, one of which is an updater
disk to convert your AMOS master disk (or at least a backup of it) to
give you AMOS 1.34, as the only versions of AMOS that will run the
compiler are 1.3 and upwards. The other disk is the compiler, and
although this works very well in a normal Amiga, obviously the
thing works better if it has more legroom in the memory
department. To help users of unexpanded A500s, a number of
memory saving routes have been worked out for you, so you can
compile as large a program as a big-memoried 2000 user. For
example using direct mode, you can compile programs using a new
command called compile, strangely enough. This allows you to
employ memory saving features such as the ability to compile
direct to and from disk, rather than load the whole program into
memory to do so.
The updating goes along automatically with a little program which
you run which does all the hard work for you, installing the
extension and copying the various parts of the program disks
across to your AMOS disk or hard disk partition.
There are some PD programs and other types of example program
on the disk. AMOS Assembler is also included on the master disks,
just in case you hadn't seen this excellent program already. This is
one way of expanding the capability of AMOS by using machine
code stored in AMOS banks. (If you know about machine code that
is!) I've included a little blurb about this program, AMOS Assembler
by Gary Symons, in Chapter 18. AMOS Assembler is a separate
program and doesn't need to be installed in order to run.

Using the Compiler
The compiler uses a number of methods to run. The first method
which you should be aware of is the COMPILE command which can
be used in direct mode. First you have to close window 0 by going
to direct mode and typing:

Screen Close O

This saves 32K of memory and forces the compiler messages to be
displayed in the direct mode window rather than on the current
screen. Then you are free to compile your programs.
Compilation essentially takes your AMOS code and reduces each
command to its vital elements, interpreting the meaning of the
code into assembly language and then into raw code. The file you're
left with cannot be read into AMOS, or printed like a text file,

Mastering Amiga AMOS

because it is an executable file, a program in itself. It can be run
from the CLI or the Workbench like any other Amiga program, and
is indistinguishable from the real thing.
To compile your programs you type:

compile <filename> [parameters]

or for example:

compile "your program name.AMOS -D11 -T3"

The parameters at the end I'll go into in a sec. The other option is to
compile the program using the AMOS front end. A front end is a
graphic interface to a program, and this is the friendliest wayto
compile your programs. Just load Compiler.AMOS and run it. The
screen will tell you what to do. Click on the buttons and compile
away!
The third method is from the CLI in AmigaDOS. You run the ACMP
program like so:

acmp <filename> [parameters]

perhaps like so:

acmp "your program again.AMOS" -OMyProg

Where the output file is called M)/Prog, and that is what you type to
run the program in this case.

Fine Tuning
Those are the basic methods, but here’s the detail. In the
Compiler.AMOS front end you have a nice easy method of running
the compiler and setting up the options. But a power user will like
to fine tune the compilation process himself. Here are the
parameters you'd use. Each option is chosen with a dash, -,
followed by a single letter.

-O<liIename>
This stands for OBJECT FILE, and means the output file. If you omit
this command the compiler will simply strip the .AMOS part of the
input filename and use that as the output file. In most cases this is
enough, but sometimes you'll want the program to have a different
name to the input file. It happens.

The D option allows you to specify the source and the destination
of the AMOS compilation. The 1 signifies a disk and the 0 signifies
the Ram Disk, the first number is the source and the second
number the destination. The permutations are as follows:

AMOS Compiler
 .

-D00 RAM to RAM

-D01 RAM to Disk

-D10 Disk to RAM

-D11 Disk to Disk

So if you’re compiling from disk to Ram Disk, your program in
AMOS format is on the disk and the finished compiled program
ends up on the Ram Disk.

-Tn
The T option specifies the type of program that the output file is.
The types are as follows:

-T0 Workbench program with icon
-T1 CLI program without icon
-T2 CLI program with automatic multitasking
-T3 Compiled AMOS program

The last option produces a program which is compiled but can be
run from AMOS.

-Sn
where n=0 or 1. AMOS will always create the default brown screen
with the flashing cursor. If you don't want to see that (it's a dead
giveaway that your compiled program is written in AMOS) then you
must set the -S0 toggle. If you want to reset this feature use the -S1
toggle.

-Wn
where n=0 or 1. This prevents AMOS erasing the current Workbench
screen when the compiled program is executed. -W1 holds off
displaying the AMOS program until your program does an AMOS TO
FRONT. Or you can write a routine which creates and writes text to
a CLI window. -W0 is the default setting.

-L
Used for compiling large programs.
There are some other options you can set but these are available in
the AMOS Compiler manual.

Using the Front End
The front end program, Compiler.AMOS, is very useful for
compiling stuff on the fly, where you don't want to be doing with
anything complex. The program window specifies source,

Mastering Amiga AMOS
.

destination and type of program, and has some configuration
options too. The program runs all the direct mode commands, so
the only difference between this approach and the more technical
direct mode or CLI approachis that with the front end you don't
have to really think about what you're doing too much.

Commercial Release
There is an interesting note in the manual concerning the
commercial release of compiled AMOS programs. Obviously if you
compile a program written in AMOS, it can't be distinguished from
any normal machine code program without examining the file. The
note in the manual says if you create a program for the PD or
Shareware/Licenseware, you must say that the development
program used was AMOS. If you are selling the program
commercially, then you must let Europress know, but they will keep
quiet about it being done in AMOS until the program comes out.
The reason for this is that certain programmers are noticing a
reluctance of software houses to accept programs written using
game creators. Europress will then publicise the fact that the
program was AMOS-based two months after release. Very neat.

Good Vibrations
I like the compiler very much, as you can probably tell, and it really
does make programs fly along. Although the speed difference isn't
quite as marked as I was expecting, it does make a difference,
especially for many tasks operating at once, like animation, music
and so forth. Where in certain programs you will have noticed a
marked slow down in the music score when there's a lot happening
on screen, you now see a definite improvement. This is the area in
which the compiler is most useful, that and the ability to run your
programs without having to use the RAMOS runtime program. Not
only that but it prevents people listing your program and stealing
your ideas. I would hate to see the end of RAMOS driven programs,
as I think that a lot can be done with plain vanilla AMOS. The
compiler has its place, sure, but it’s not the answer to all your
problems. The way to better programs is (unsurprisingly) through
better programming.

Compiler Hints and Tips
There are some things which you should know for using the
Compiler effectively. For a start. you may notice some graphics
movement will flicker a little bit when you compile a program. This
is entirely due to the speed of the AMOS compiler, and not a
problem. The loop you have set up is going so fast it's flickering,
and the best way to synchronise it with the screen speed is to use a

AMOS Compiler
 |

WAIT VBL at the end of each loop. If you're using UPDATE, you must
ensure that at least one vertical blank occurs between any two
UPDATES.
If your program won't compile you probably haven't tested it. Test
the program and then save it to disk or Ram Disk (wherever you
want to save it) and then recompile it. Certain extensions can cause
problems, but only really if you haven't got the latest versions.
(Contact AMOS Club for further details about this.) The PRUN
command isn't supported from AMOS, and has to be replaced with
RUN if you intend to compile your program.
Some programs won't compile because you haven't opened a screen
at the beginning, which is especially tricky if you've turned off the
default screen button in the compiler setup. There are many
reasons why you might do this, and one is to conceal that the
program is written in AMOS. To fix this, either turn the default
screen back on or open a screen at the start of the program. Why
would you not open a screen at the start of a program? Well certain
operations automatically open a screen, like:

Load Iff "filename",O

which loads an IFF into screen 0, automatically adjusting the size to
fit whatever the size of the screen is, or:

Unpack 6 To O

which takes the packed picture in bank 6 and unpacks it to screen
0. If you want more hints and tips on compilation join the AMOS
Club and read their newsletter (see Chapter 23).

More Dimensions
AMOS Compiler is one way to beef up the performance of your
AMOS system, but there is a far more complex way of making AMOS
into something else entirely. AMOS 3D does something that no
other BASIC language can do and that is 3D graphics! If you want to
know about AMOS 3D, turn the page.

Mastering Amiga AMOS

5ea
20:
AMOS 3D

I waited what seemed like a
long time for AMOS 3D, and as
the days stretched out into
months, it began to seem that
perhaps it was impossible,
that you couldn't create 3D
objects and move them
around in real time with a
BASIC interpreter. But the
module was promised, and so
far Europress had delivered all
the support it promised for
the AMOS system, so the
prospects looked good.
Sure enough it appeared, and
we all breathed a sigh of
relief. It's out, I've tried it and
it works! More to the point it’s
the most simple way of
creating 3D games and demos.
The Red Sector Demo maker
(and all its copies) is too
hackish and tricky to be of
any use for such things as
full-blown games design, so
the only option, AMOS 3D, is
certainly to be considered the
besu
But even AMOS 3D isn’t really
the perfect solution and to a
certain extent we are making
do and mending. There are
rumours of a 3D version of
TOME, and even a vector 3D
designer, both from Shadow
Software, but as yet we are
still lacking the perfect 3D
extension. Someone did get
part way through writing one,
but when he approached
Europress to distribute it they
said they wouldn't consider
anything as they already had a
3D extension.

Mastering Amiga AMOS

AMOS 3D is okay on accelerated machines like the A4000, but not
everyone has one of those, plus the Object Modeller doesn't work
on a 4000! Until a perfect 3D system comes along we'll have to use
AMOS 3D.

A 3D World
AMOS 3D, like the compiler and AMOS TOME, is an extension, and it
runs in the same way. You have an editor program called the Object
Modeller, OM for short, and an extension which must be installed
on your master AMOS disk or hard disk partition.
To install AMOS 3D all you have to do is run the install program on
the Install disk. This is an AMOS program, and it allows you to
either install AMOS 1.3 or over (needed to run both AMOS Compiler
and AMOS 3D) on a floppy or hard disk version of AMOS. The 3D
part of the program is an extension, so it isn't a physical program
that you run, it's installed as an integral part of the AMOS system.
After you've installed AMOS 1.3 and 3D, you can tell you are
running 3D because the words Voodoo 3D extension I 1.00 are
included with the other extensions on your AMOS startup screen.
The Voodoo bit means that the 3D extension was created by Voodoo
Software rather than the usual Francois Lionet/JAWX. It's still a
genuine AMOS product however. No extension can be a true AMOS
extension without ratification by Europress, hence the lack of any
third party 3D systems.

AMOS OM
Although there are alot of example objects on the disk to get you
going (see Table 20.1) you have to create your own objects using
the object modeller. This program will enable you to create shapes
and bolt them together into meaningful objects. The objects you
make can be shaded in any colours you like, and you can even draw
small bitmaps to map them onto the sides of the shapes to make
them more lifelike. The OM isn't a proper 3D shape creator, that is
to say you can't expect to turn out proper ray-traced shapes like the
Lawnmower Man or anything like that. But it is a very powerful
vector graphics engine, and this enables you to create objects
which, while not being perfect 3D objects, will at least mimic the
shapes of real 3D objects, enough for the purposes of a 3D game or
a demo.
You run OM either by typing OM if you're a shell user, or simply
clicking on the icon if you are running from Workbench. OM prefers
to run alone, so free up memory by quitting any other programs
you may have running.

AMOS 3D
ml

OM is a program which runs separately from AMOS, to allow you to
create objects for use within AMOS. The program features alot of
tools for stretching, squashing and forming primitives, like
squares, circles, cubes and pyramids. You copy the primitives to
work areas on the screen called shelves (I don't know why, so don't
ask), where you work on them with the mouse, selecting a point,
line or face with a series of keypresses, and deforming it by clicking
on the exotic roll and tilt control or the arrows whilst holding the
button down and moving the mouse. Although this sounds very
complex, it couldn't be simpler. Selected faces have a marker on
them so you know which face is the active face when performing an
operation on it.
Once you have reshaped the primitives into something a little bit
more diverse, you can glue them together to make other more
complex objects. This is done simply by selecting the faces that
need to be glued together on the two objects, and once selected
this is done automatically.

alphabet
amidisk
amiga
amos3d

oar
chain
chess
chess 1

coffin
copier
disk
enterprise
face
gallows
hereboy
insect

letterh
letter!
Zines
lorry

manual
missile 1
mJ'ssile2
mis__front
mother
one_ton

phone
plane
poise
punt

rifle
ship 1

ship2
ship4

ship5
ship6

dnp8
ship9
stationl
station2.
struct
summer_house
sun shade
flueedee
voodoo
within

Table 20.1. Objects included with the OM.

Then you can apply surface detail, patterns in four colours which
you can map to the selected face of the object. This is done by
drawing lines on a grid, which are then filled before they are
attached to the face of the object. The neat thing about these

Mastering Amiga AMOS

surface detail grids is that they can be copied from and to objects
at will, so you can copy a face back onto the grid if you forgot how
to draw it, even if the object is one you did a while back.

More AMOS 3D
Recently the AMOS 3D system received a shot in the arm with the
release of the AMOS 3D Object Modeller Disk 1.2. This update has
some great new objects on it. The new OM disk is essentially the
same as its predecessor, but with the addition of some new objects
for you to use in your own programs. Okay, so there were quite a
few anyway, now there's even more.
Of these new objects one of the most interesting is the idea of
using inside out blocks. Blocks that have been turned inside out by
using the group sizing tool are displayed with only invisible faces
drawn. This is what you would see if you were inside the block.
New objects Punt and summer_house on the examples disk use this
effect. In summer_house two cubes, one regular and the other
inside out, have been glued together to yield an object with an
outside and an inside. Surface detail windows in the regular cube
let you see inside. A further block has been placed inside. For all of
this to work correctly the block numbers are important. The
example object within demonstrates another effect called double
nesting, which is a variation on this theme. As with summer_house,
the order in which the blocks are glued together is vital.

Figure 20.1- AMOS Object Modeller.

The disk also features details of some interesting undocumented
Td Commands like the one to define the order in which objects are
drawn:

Td Priority n,p

where:
n = object number.
p = object drawing priority.

AMOS 3D
i.

This allows you to specify the order in which objects are drawn by
the 3D system. In other words objects that are drawn first appear in |
front of other objects. The command makes some interesting
special effects possible:

Priority,p Object drawing order

which translates as:

0 Draw the object in the normal way (by depth).
>0 Draw the object in front of all other objects with a lower

priority.
<0 Draw the object behind all other objects with a higher

priority.

By default all objects have a priority of 0. Note that if two objects
have non-zero priority the one with the highest priority will be
drawn first (in front).
The other undocumented feature is Td Set Colour which sets a
specified object block's colour combination, like so.

Td Set Colour n,b,c

where:
n - Object number.
b = Block number.
c = Colour combination code of the block (same as in OM).

This command is the language equivalent of OM's colour
combination tool described in the 3D manual. It sets the colour
combination code of the specified block. Valid colour numbers
range from 0 to 16; colour combinations 0 to 12 are the same as in
OM, colour combinations 13-15 are new. An out of range colour
code will be truncated to the nearest valid code without causing an
error.
Contact Europress Software for further details about the OM disk
update.

Using Objects
Once the AMOS 3D extension has been fitted to your AMOS
program, you can load and move 3D objects in your normal AMOS
programs, using a series of new commands.
Now you have to come to terms with the idea of space, 3D space.
The world now has a trio of axes, called x, y and z. X and y are the
ones we are used to on the computer screen, and translating

Mastering Amiga AMOS

objects around that screen merely involves adding numbers to their
x,y coordinates. Like the numbers which tell a move sprite
command to shift the position of a sprite. But now you have an
extra dimension, that of depth, and this is the z dimension.
With AMOS 3D there are a new set of commands called Td
commands, and these preface any 3D commands you put in your
programs, like this example I knocked up in about 10 seconds using
one of the simple examples on the disk as a basis:

Rem * Object Roll Demo.AMOS *
Rem
Td Dir "disk_containing#3D_objects"
Hide
Double Buffer
Autoback O
Td Load "test_object"
Td Object 1,"test_object",0,0,5000,0,5000,-4000
Palette ,,,,,,,,,$FFF,$F,$777
Repeat

Td Angle 1,A,0,A
A=A+1000

Cls O
Td Redraw

Screen Swap
Wait Vbl

Until False

Now that's what I call a simple program. And it does so much!
Substitute your own object or one from the demo disk in place of
the Td Dir and Td Load commands. Double buffering is definitely
required as this smooths the transition between one redraw and the
next, and is in fact the way it is done in professional 3D programs
written in assembler.
As well as rotating the objects and moving them in and out of the
screen, you can animate the surface detail, animate the shape, do
collision detection with other 3D shapes, and generally do all the
things you’d associate with a top flight 3D game or PD demo disk
by a really talented vector graphics crew.

AMOS 3D
M,

It all sounds like a bit of a dream really, doesn't it? But it's all true.
All the demos I created on the first day of using the program
worked like a dream, and although they are not as silky smooth as I
would like, the effect is undeniably solid and professional looking.
Obviously you have to learn to think in three dimensions, but that
goes with the turf. Vectors are hard to do in normal circumstances,
but this program should make the whole thing really that much
easier to cope with. You can sketch out your 3D ideas on graph
paper beforehand, just to give you an idea of what you want, but in
most cases the best idea is just to plough into it and make it up as
you go along. Not only will you learn the program more quickly that
way. Who knows, you might have fun along the way.

Summing Up
AMOS 3D completes the AMOS system with a bang. Now it’s possible
to not only make games, but a whole variety of new and high tech
programs which now suggest themselves. Virtual reality? Well no,
not really, but certainly a very good 3D program, and as a modeller
I much prefer it to 3D Construction Kit. I can't really fault it, and
although I could say I'd like to see it faster, I know this isn't really
possible. Compiling obviously smooths things out but not all that
much. I'd like a utility to transfer objects from one disk to another
as an object is made of a number of obscurely named files, and you
have to load them into OM and save them to another disk in order
to be sure of getting all the files. How about precompiling the
movement, a sort of 3D AMAL? Wait and see.

Mastering Amiga AMOS

I
5

O
21 :
AMOS
Professional

AMOS Professional is a more
sophisticated version of AMOS
for program development in
the '90s and, although it is
more powerful and more
advanced than the classic
AMOS v1.34, great pains have
been taken to ensure that it
remains compatible with
existing AMOS products.
If you've bought this book and
you're an AMOS Pro owner,
then don't think this book will
be of no use to you. For
reasons IWI go into in a
moment, the AMOS Pro
program has very few
differences compared with the
current AMOS program, as far
as program compatibility
goes. The major differences
are between Original AMOS 1.0
and AMOS Pro. AMOS 1.34 is
so little different from Pro
that you might as well have
either if you’re using this book
to learn AMOS. The only
things I don't cover in this
book are AMOS Interface and
certain AMOS Pro specific
commands. These are not
necessary for you to learn
AMOS. If AMOS Pro is your
first BASIC interpreter, you
may have bitten off slightly
more than you can chew by
starting with AMOS Pro. Learn
everything you can using this
book, then once you have that
down pat you can go back to
the AMOS Pro manual and
learn about the extra bits from
that excellent book. If you
already have Pro then this
chapter will tell you things

Mastering Amiga AMOS

you perhaps already know, so you may not care to read it. If you
don't have Pro then read this, especially if you think you might
want to buy the program in preference to your existing AMOS.

Why Pro?
From the start AMOS was Francois Lionet's personal vision of what a
programming language and editor should be like and, although it
was revolutionary at the time, there would obviously come a time
when people would want to see changes. Tastes change and,
although the environment in classic AMOS could be configured to
suit, a lot of things about the system were not quite right — to some
folk’s way of thinking.

I I Z i M 1 M I .I .I . I I .I I

Figure 21.1. AMOS Professional - a new look and feel.

New Kid on the Block
Coming forward in time to the present, when AMOS Professional
has been wheeled out blinking into the cold light of day. The big
question is what's it like? Well, as predicted, a lot of stuff has been
learned from the development of other AMOS products like the Easy
AMOS system for example, and so things like new requesters and
the excellent AMOS Tutor (now called AMOS Monitor in AMOS Pro)
which enables you to step through your programs a line at a time
and see the effects either as a small screen or a full screen preview.

AMOS Professional

To my mind this is the most useful innovation of the AMOS line,
because it means you can stamp out the bugs as they arise rather
than slaving away trying to track them in a program that's running
at full speed. Under normal circumstances most bugs in programs
need to be traced by sheer weight of logic, thinking your way
through the program and then stomping on them. This way you can
see an odd effect in slow motion, and not have to blow your brain
up trying to figure out what could be wrong.

 mHHkHT1Hi|

r i IE! nut. is
‘II Eillli mt

' " ' IEIIIIIII-ltllrllllr
_ M

totedutr TITLE
Ftliedire SHl]l-I Hl SEHRE
_Prot9d1r9 HXI Lilli
Procedure (_RlEHl
Pratedire (_LEFi
Protedire (_RUlHTE
Protrdire K UUHH
:" -Eli =II:2.!I'iI=.. Jli I 'IJi at 1'01.--llir

Em Em
@-

Figure 21.2. AMOS Monitor.

By and large most of what you know from using AMOS in all its
many versions will see you all right. AMOS Professional is a more
flexible and powerful environment for you to develop software in,
rather than a complete change of program. The fundamental
principles are the same, it's just the manner in which they are
presented and the options open to you that have really changed for
the better, I think.

AMOS Engine
You can use AMOS Pro to write AMOS programs like the ones you
wrote before, except this time you’ll be using a new editor with a
cleaner setup and pull-down menus. The one drawback is that the
compiler version to go with the new program has only just been
released and it's still uncertain what is going to happen about 3D.

Mastering Amiga AMOS

Obviously with all new commands and features, the compiler had
to be rewritten to cope with the extra keywords. Once it's been out
a while and has been tested fully by the AMOS community, only
then will I give it the thumbs up.
Should you buy Amos Pro? The answer to that question is that it
very much depends on your status now in the world of AMOS. If
you are a complete beginner the answer is no, forget it and buy
Easy AMOS because it’s easier to grasp and you'll get more than
adequate results. If you have Easy AMOS and are getting quite
proficient, then the regular AMOS would be a better bet for the
moment. If you already have regular AMOS, then the only way is up,
and so AMOS Pro is the only way to go. At the time of writing the
AMOS Pro interpreter isn’t really my cup of tea, although given time
I expect it to take the mantle of greatness from AMOS Classic.
The main problem is that, rather than being a completely rewritten
program, Pro is simply an updated version of AMOS with bits of
Easy AMOS bolted on, and the AMOS Interface bits added. So rather
than being a cohesive whole, the program does suffer from being a
bit of a mish mash of ideas. Interface is the only bit that's really
new, and according to some expert AMOS sources, that's been
implemented badly. Not to say it doesn't work, it does, but it
doesn't work as well or as reliably as the original program.
If you have AMOS Pro then fine, you have a version of AMOS which
will do all the things the original program will do. If you have AMOS
and want AMOS Pro then you're probably better off for the time
being using an external program like NCommand to do the things
would would like to do in AMOS Interface. That way you can create
custom dialog boxes and requesters all of your very own. In fact
using the 3DReq.AMOS program in this book as a basis, you could
even write your own system. Interface is slow, and AMOS is fast.
Best idea is to do it yourself.
On this subject I'll leave you with a quote from a review of AMOS.
“AMOS suffers from not being able to use Intuition, the built-in
Amiga windowing system, so it always looks like an AMOS program.
However AMOS Pro has its own Interface language, which means it
doesn't look like an AMOS program, it always looks like an AMOS
Pro program." Hmm. In fact Francois is working currently on an
Intuition extension for AMOS, but it may be too little too late, as
two extensions called LDOS and LSERIAL are in the offing which are
being written in Sweden. These are being made system legal, ie not
clashing with other extensions (which they do at the moment), and
they are PD!

AMOS Professional

New Features of AMOS Pro
IFF ANIM
The new system now has commands to play IFF ANIM files directly
and, it is said, they operate faster than those used in DPaint IV! This
is not possible at all in AMOS, except by some very clever
programming beyond the scope of normal humans.

Double Precision Support
For floating point operations and, of course, support for any maths
coprocessor you might have lying around cluttering up your
computer. Those damn accelerator cards get everywhere.

Unlimited Banks
In classic AMOS you had just 16 short memory banks to store all
your graphics and sounds in, but now you can have up to 65,000
which is as near to unlimited as you can imagine really __ can you
picture keeping track of about 900 banks? Of course there are also
some new bank commands to cope with the strain, and these are
very powerful.

Speech Mouth
There's nowt so queer as folk, as the Great Bard once said. Some
people, when asked what they wanted to see most in the new AMOS
said they'd like a little animated mouth movement to match
narrator driven speech. What are these people on?

ELSE IF
A new control structure has been added, which is more like switch
casing in C than any structure you'd find in BASIC. You can have as
many cases as you like and you can hop out of the test with an
ENDIF. Very slick, and C programmers will get off on the similarity
with switch case.

Error Trapping
The new command TRAP prevents any errors hit by the program
from stopping the program dead. This means your compiled
programs won't bomb out when they hit a problem.

ASSIGN
An ASSIGN command has been added, which acts just like the
AmigaDOS command of the same name. This allows you to assign a
device name to a directory or device, like ASSIGN STORE: RAM: or
anything like that.

Mastering Amiga AMOS

Ports and Libs
About 40 or 50 commands have been added covering the devices
like SER: PRT: PAR:, and also advanced commands for libraries like
Lib Open, Lib Close. Advanced stuff, and of more use to people who
really know what they're doing. Not for the faint hearted.

MED Support
AMOS couldn't play modules from Soundtracker type programs
directly. As the most popular and sophisticated tracker of the '90s
is MED, AMOS Pro has a method for playing MED modules directly
with MIDI support through MED. MED not only supports MIDI and
samples but it also allows very sophisticated synthesis. The MED
player is a library rather than part of the main AMOS Pro program
so it can be updated regularly to keep pace with developments to
the MED system without altering the main AMOS Pro program.

Noisetracker Support
The ability to play Noisetracker modules directly has been added.
This is bolted into the system so future revisions of the NT
program may differ. Noisetracker is pretty much static now,
though, so this will not really be a problem. Previously the
converter programs for trackers were a little erratic and this fixes a
lot of the problems.

ARexx Control
A big selling point in the US, as ARexx has been a major force over
there even before it was incorporated into the Amiga system. This
interprocess communication language is now becoming very
popular over here too, and so ARexx ports can be opened and data
sent and received as normal.

EXEC
You can now run any AmigaDOS program from within AMOS using
the new EXEC command. This is an enhancement from the previous
way of running Amiga programs from AMOS which was a little more
involved.

POKES and PEEK$

Now you can use these commands to put strings into memory
locationsas well as numeric data. Exactly why you would want to is
a bit of a mystery to me, but there it is if you need it.
AMOS Interlace
This is a major part of the revised AMOS, allowing you previously
impossible control over the interface of your AMOS system and any
other interfaces you might like to design for programs. The system
starts humbly by letting you customise the interface using IFF
screens containing all the buttons and window graphics. The

AMOS Professional

elements are grabbed using a similar process to a sprite grabber. A
resulting resource file is then saved, ready to be loaded by the
program when the interface is in use! There is also the AMOS
Interface string based language, which is like AMAL only bigger and
far more complex. Once again this is not for the faint hearted.

AMOS Monitor
The tutor program from Easy AMOS has been revamped and is now
available for full AMOS users. Bug tracing and stomping a
speciality. The name change is to lose the tutorial tag, but the
program remains largely unchanged.

New Editor
There is a new editor program in AMOS Pro, with a much more
workmanlike interface design, pull down menus and the ability to
load, edit and run multiple programs. The look is cleaner and more
Workbench 2 like, although previous users of AMOS will find many
similarities with the system they're used to. The pull down menus
replace the old buttons across the top of the AMOS window,
although some functions are still allocated buttons on the main
window.

Figure 21.3. The Editor can be customised to suit your own needs.

Configuration
There's a new online configuration program, which lets you alter
your settings easily and quickly without having to load and run a
separate program. There are also configure editor options like
screen sizes, error messages etc, all of which can be changed to suit
your needs.

Mastering Amiga AMOS

Compatibility
You can load old AMOS and Easy AMOS programs, and run them
quite happily, as the basic elements of the system remain
unchanged. There’s also a auto check facility to test compatibility
between AMOS Pro programs and older versions of the interpreter,
which automatically traces the areas where you are likely to have
problems if you want the program to run on all versions. This
means that with AMOS Pro you can still tap in the examples in this
book, which were mostly written in AMOS 1.34!

Machine Code
Although it has always been possible to use machine code in AMOS
programs, you can now load machine code directly into procedures.
Machine code is loaded directly into their own procedures, which
then can be called from any part of the AMOS program. If the
procedure is full then the code in the proc will be erased and
replaced with the machine code block. In most cases it’s best to
load machine code into a blank proc, and then that machine code
program can be accessed using the proc name.
Keyboard Macros
Almost all computer programs these days allow you to assign a
series of regularly used commands to a single keystroke or
combination of keys to save time. The macro system in AMOS Pro
lets you assign any series of commands to single keystrokes
making life a lot easier if there are some long repetitive processes
you used to do by hand, like block out areas of the program using
REM statements. Not only that but any menu option can be
reconfigured to be triggered by any key you like.

Mark and Find
Special marks in the source code remember where you‘ve been and
using this process you can mark places in the program which you
intend to visit often, like the bit where you initialise variables etc.

Undolliedo System
Using a special new smart undo feature, you can undo and redo any
number of lines, up to the limited of your memory.

CutlPaste
Now you can cut and paste at any position in the text and not just
whole lines. The left button is used to mark sections of code, rather
than the right button in old versions, and this mode is activated by
double-clicking on the character you wish to start from. l must
admit I still forget and try to use the right button.

Mastering Amiga AMOS

Compatibility
You can load old AMOS and Easy AMOS programs, and run them
quite happily, as the basic elements of the system remain
unchanged. There's also a auto check facility to test compatibility
between AMOS Pro programs and older versions of the interpreter,
which automatically traces the areas where you are likely to have
problems if you want the program to run on all versions. This
means that with AMOS Pro you can still tap in the examples in this
book, which were mostly written in AMOS 1.34!

Machine Code
Although it has always been possible to use machine code in AMOS
programs, you can now load machine code directly into procedures.
Machine code is loaded directly into their own procedures, which
then can be called from any part of the AMOS program. If the
procedure is full then the code in the proc will be erased and
replaced with the machine code block. In most cases it's best to
load machine code into a blank proc, and then that machine code
program can be accessed using the proc name.
Keyboard Macros
Almost all computer programs these days allow you to assign a
series of regularly used commands to a single keystroke or
combination of keys to save time. The macro system in AMOS Pro
lets you assign any series of commands to single keystrokes
making life a lot easier if there are some long repetitive processes
you used to do by hand, like block out areas of the program using
REM statements. Not only that but any menu option can be
reconfigured to be triggered by any key you like.

Mark and Find
Special marks in the source code remember where you've been and
using this process you can mark places in the program which you
intend to visit often, like the bit where you initialise variables etc.

Undolliedo System
Using a special new smart undo feature, you can undo and redo any
number of lines, up to the limited of your memory.

CutlPaste
Now you can cut and paste at any position in the text and not just
whole lines. The left button is used to mark sections of code, rather
than the right button in old versions, and this mode is activated by
double-clicking on the character you wish to start from. I must
admit I still forget and try to use the right button.

AMOS Professional

Sound Effects
You can now set up any sound you want to be used by the system,
rather than the old built-in sounds. You can have different system
sounds, and this makes using your favourite sounds even easier.

Custom Commands
You can replace menu commands with your own AMOS programs.

Autosave
For those of you who don't save often enough, or live in country
areas and have power cuts every now and then because a cow bites
through a power cable or a tree falls on the lines. Yes, this has
happened to me!

Kill Editor
A new command which removes the whole editor from use while a
program is running and reloads it after you've finished, saving a
complete pile of memory. There are options in the configuration
file to stop this happening in programs you get from other people,
although why you'd want to do this I'm not sure.

A place to store your own programs and run them etc. All
accessories run from this menu, as well as any programs you like to
have handy for close encounters.

Online Help
A sophisticated Help system is included in the system. This means
you have no real excuse for getting lost once the program is
running. Any word in a program can be clicked on and help about
the keyword is available online by hitting the Help key. Okay so
there's a manual too, but this is very handy when you can't really
be bothered to hunt around in the manual just a for a single word
definition. Besides, what's the point of running computers unless
you can use them to save time?

Direct Mode
The Direct Mode was one that I for one used a lot, and I'm
overjoyed to see it improved like this. The direct mode window has
been enhanced to have window gadgets for certain functions, and a
AmigaDOS Shell style command history, using the cursor keys
rather than the function keys. This means that you can get the last
line you typed back by pressing the up cursor key like you can in
the Shell. Once you have the line back you can re-execute it by
pressing Return or re-edit it like a line in a wordprocessor. Handy
for executing along stream of similar lines.

Mastering Amiga AMOS
M

I‘|:

Figure 21.4. The AMOS Pro direct mode of operation.

File Selector
The new file selector has a lot of new features, one of which is the
ability to store directories that you visit often and allow you to
page back through them rather than hunt about for them every
time. It's a much more Workbench 2 kind of affair as well, and
enables you to quickly and quietly zip to the exact directory you
were looking for without having to noodle about with typing in
filenames etc.

Physical Differences
The program now comes on six disks, as many people complained
about AMOS that the examples were too few and not very high
quality. I thought they were pretty good myself, but I guess the
customer is always right! So you now have loads of examples and
backup programs and the online help facility for the hard of
thinking. In total there are around 200 more commands in AMOS
Pro than there was in the latest version of AMOS classic. Your old
compiler won't work with the new program, instead you’ll need to
use the AMOS Professional Compiler.
AMOS Pro works better on hard disk than on floppies by virtue of
its size and complexity, but will quite happily sit about on discrete
floppies if that's the way you work.

AMOS Professional
 |

The size of the working area on the screen has been enlarged, so
you see more of the program you're working on and less of the on-
screen buttons. This has been made possible by transferring a lot of
the more complex functions from buttons to pull down menus,
which you only see when you press the right mouse button.
The Help function used in Easy AMOS has been enhanced to be
much more helpful. Help is available for any command in the AMOS
language, simply by clicking the cursor on the word in question and
then activating the help function either from a menu or by simply
slapping the help button. A window pops up over the main source
code giving syntax (a sort of template showing the way the word
should be used) and working examples of how the command is
used in context. This is invaluable for users who are used to AMOS
classic or Easy AMOS. The new editor is, as I said before, able to
load more than one program, but there is also the possibility of
editing the two programs on a split screen at the same time. Each
program window is separate and accessible by simply clicking on
the window.
One thing which I particularly approve of is the addition in the new
editor of better and more accessible printer functions. I don't know
about you, but I really need to debug programs on paper. I can't
debug source code or proof read text for that matter on screen. If I
have to read a piece of code for mistakes I prefer to have a printout
on a sheet of paper and sit down in a comfy chair with a cup of tea
and a pen. Regular AMOS can print out but you have to select all as
a block and print the block. Printing any area of the program is
much more simple with AMOS Pro and, for that little relief, much
thanks.
The new block mode is excellent, activated by double-clicking on
any area of the text. Now the program is much more Amiga-ised,
with proper windows, pull down menus and proper use of the
mouse buttons.
Yet another new feature which I've been waiting for since the
program began all those years ago, is the ability to adjust the size
of the buffer at any time, without having to save the program first.
The old system meant that you had to fiddle about a bit to operate
on large programs which were saved with PROCs folded when they
were saved. Now you can simply whack up the size of the buffer
and unfold the PROCs at your leisure. The SET BUFFER command
makes this possible, and in Direct mode you can make any
adjustments to the buffer size which take you fancy.

Mastering Amiga AMOS

AMOS Intelligence
The new editor is not only easy to use it's also very intelligent.
Typing into the editor you are checked at every turn. If you mistype
anything you can alter it at the time rather than later when you
might not recall exactly what it was you were trying to get at.
Movement around the editor has been made even easier by allowing
you to hop from procedure to procedure or even label to label. As
Labels and procedures are the key elements of any program, this
makes moving about in an AMOS program a very easy and
convenient routine.
The buttons along the top of the screen are for switching to direct
mode, flipping back to Workbench, and buttons for Run, Test,
Indent, Amos Monitor, Help, a button for sorting the windows on
your Editor screen, a button for folding/unfolding procedures and a
button for inserting a return. Editing windows can be compressed
to a single line with the title in it, by hitting the compressor button
on each editor window. This saves space on a cluttered screen.
Direct mode is more intelligent too. The command line history
makes it easy to input a number of similar commands as you can
recall the last one, edit and re-execute it, all in a few seconds. But
more important than this is the ability of the direct mode screen to
redirect output to the AMOS screen above it (as normal) or to the
Direct mode window. This means if you've killed the screen, you
can still type files to the direct mode window. Or you can list
directories to the direct window to save time and make them easier
to read. The direct mode screen has a number of its own buttons
for the creation of bank lists etc just like the Function key shortcuts
in the old AMOS.

The File Selector
One of the enhancements which really makes a big difference is the
file selector, which has been enhanced beyond recognition. The
new selector is faster, easier to use and a lot better looking too.
Just like before, if there isn't enough memory for the file requester
then you simply get a single line input bar.
The file list has a slider bar and two buttons down the side,
allowing you to pull the bar about with the mouse or click on the
two arrows to scroll through the list. The buttons are for OK,
Cancel, Parent, Devices, Assigns, Sort, Sizes, Get Dir, and Store. The
store button stores up to 10 directories in memory, and this is
useful if you have a lot of partitions and want to scan through them
quickly.

AMOS Professional
 .

The selector can be moved around anywhere on the screen simply
by dragging it with the mouse.
Another very handy feature is the fact that AMOS prompts you
every 30 minutes to save your program, although this can be
turned off, I recommend you leave it be! Protext has this feature
and many's the time when a few moments after it's made me save
the computer has gone down for some reason and I would have lost
everything. Autosave is a good thing, capital G, capital T.

Figure 21.5. The AMOS Pro File Selector.

Pull Down Menus
The menus on AMOS Pro take over from the buttons on the old
AMOS classic. From the menus you can take a look at loaded
extensions, load accessories, run programs, save them, and even
check them for compatibility with AMOS 1.3!
This function does a scan of your program and points out if your
program will work under the old system, a good idea if you intend
releasing your program into the Public Domain. The function
obviously tests for any new commands which have been used, and
any memory banks above the number 16 allowable in the old

Mastering Amiga AMOS

system. Then you get a message telling you if the program is 1.3
friendly or not. The program can also save the programs as 1.3 or
Pro. Each files has its own type of header, and the Amiga knows
which files are compatible with which program by the name in the
header. AMOS Pro can save both types of file, to ensure full retro
compatibility.

lltlt
Tigs I'M a+

nsert ode
uunds

Shortcut
ran to Menu
Britons

ve

P

IflfiliCo|'ll’J'Jl-TJ'I¢J')IIJllQZl'I-I'DI'DI'DFD4:IllIIJFFFFFPU-Ff-PI'll5.3..

l'l'Ii:“'OZ

Z3751.1Z-3IDIIII'DQ4-if!"-—-1;!‘-12-'I\-N3FFQI"'l'\.D IllDJ'-InZIII

IIIZIII""7llI-Ill-—~1\DZu-I-4-I-4:7—.IIllf"'u"‘*:G.1r1-I-QQ4-P.|II-ZZ.ac- Z""""I'I""""H|Z‘J!1--—-2

uzlun¥

nnllusen|nI|oa||0\nr—-qlunanrnoqcllbqnllllnirus-vIanis—-0-1-an‘-omen-

Save Cont
Set Int

Figure 21.6. Menus are fully implemented in AMOS Pro, including a Config menu.

Macros
The new macro system is really very good indeed. This enables you
to store lists of commands to the editor or any facet of AMOS Pro,
and repeat that string of moves or commands at the touch of a
button. For example you could write a macro which goes through a
program and strips out all Rem statements, or a macro which adds
an often used line of code. Anything you can do to the editor you
can do automatically with macros.

User Menu
Finally, from my point of view, there is the user menu, which lets
you insert a program of your own making into the menus of the
editor. If you have a favourite sprite editor (SpriteX 2 of course) you
can simply add it to the user menu and access it simply and quickly
from that menu rather than adding it as an accessory. Accessories
also work differently accessing the current program directly. To
add a program to the menu you simply use Add Option from the
User menu and the dialogue box lets you type in the name of your

AMOS Professional

program. The user menu allows you up to 20 external programs
which can be accessed through the menu. These can be anything
utilities or even simple games to help relieve a bit of the old
hacking tension. Twenty hours at the keyboard every day requires a
little bit of a rest every once in a while, you know. All work and no
play makes Jack a dull boy. These are my excuses for playing games
on my machine, but you can use them if you like!

What D0 I Think?
Obviously there's a lot more to AMOS Pro than this, and the
evidence of this is the 600 page manual that comes with the
package. I'm torn between allegiance to AMOS original version and a
nice warm glow of novelty for the new version. l like the AMOS
Professional Editor that’s for sure, but liking it means I have to
spend the next six months of my life learning all the new functions
and taking on board all the new concepts that a new language
entails. But the beauty of it is that I don’t have to learn from
scratch. AMOS itself hasn’t changed, it's just been added to. The
best extended BASIC of all time has itself been extended, which l
suppose is only natural.
Change is part of life, if you don't change you die, and this is true
in the world of software as it is in real life. Time will tell if Pro
really will live up to its initial promise.

Mastering Amiga AMOS

g
éw
22:
Easy AMOS

AMOS was released onto an
unsuspecting public, and at
once people began to realise
this wasn't just any old
ordinary language for game
production. lt was in fact a
very complex and powerful
thing and you could take it
just about as far as you liked.
But the very power of the
language was its problem too.
Some people found it a little
hard to get into, through no
fault of their’s or of the
designers. AMOS is simple to
learn but hard to apply fully,
and that is when the idea of a
tutorial came up. This idea
grew until Easy AMOS was
born. Now Easy AMOS is a
cheap and very useful first
step into the world of AMOS,
with many features which you
can use in future when you
upgrade to a full version of
the program.
The idea behind this new
version of the program is that
new users or kids can get a
grip on AMOS without a lot of
the very technical stuff
getting in the road. EA isn’t
just a cut down version,
although it features about 300
commands instead of the
usual 600 or so. Its main
objective is not necessarily to
be smaller, but easier, hence
the name. The main thrust of
the package and its programs
is to become a tutorial for
programming and using AMOS
and, despite having less
commands, it’s actually got
more accessories than before.
So less really is more. lt’s easy

Mastering Amiga AMOS

to see that once you have this program under your belt you will
have more than enough to get you going on the full-grown AMOS
program.

Easy as Pl
Obviously most of the changes are going to be cosmetic to appeal
to a different audience. The main change you notice right away is
the editor has changed quite a lot, and it now looks a lot more like
Workbench 2.0 and 3.0. It does look nicer, although the function of
the screen isn’t altered much for all the 3D effects and colour
changes. The reason for the cosmetic changes are apparently to be
more appealing to kids. It's more like a cosmetic change to make it
look different to what l call these days Classic AMOS.

m,.........,
I" : ex I ' |1'i ' ~ ‘ as I I I * I 1 Iu- | ue."i

. 63 |r . \I|:l.rir

;'I P=45 I f Htsc Then SYHURRIISG Else SYHORR=19? 1
’ HARNING; never_break out of the PPflQP&Hi this would leave the current
' hank Ifl Memory forever!treat err

HN1$(?B),FLAfi(26),BA(1?il FLAGi),HHOH HH1,HH3 HHN.NHNl senAL§ sxzeon sxntnon sxntoon srzo6n,seeonrxze.lrzM.xoln.ruzn.§xeze.sr6ze.znB res. est, sreB,0>eB.ereB sxess,eer<eB.s>e4eB,svi1eB.H>sB,Haeecurler» CUBB,NPBB NPLANS.HSPOTBceeietl BHAHE$ vtns>sr,nt,§nt,s¥rt1§XPT,YPT,SXPT,Sxes.rHs sxes sensUB3] cLec>.clrr eiii centlobe] ex HY es HZ,HK,fHH,FHZ,FHS,FHTGlobal sct1,tcBélabel rcoe.rcoo CHD.ALERT.INF 1nrs.eous .M1 is “Be is SYeP.r.>.s.§i..i.e.i....s.>r§i..§.\.<.m...s.Y..it.1.>....§.§.i..§..s.i.................. . e
521:.-T:-i-_'.':|-|-I:.|-_'E|||-L'E||-L':|f‘:d:':-pf:-,-E-|l;|

il--—-‘Ill‘Foollrrrllm-m-|I|_...._I|_I]1|I;-1.

¢@C‘-3'13‘QCZQ@Z nr'v.'.'.r'v:.r'r:r-"|="|:-"<:r'r='-c::' 5'-H9-’SI-FW5-‘I-I53-I9:-ISI-I5|-It(‘"3 I--In--la—I|--l|1n|1|;_-1;-_q_-:""i

11;!

fiééfixfi

IL!’

1I:.".'|-lfr-'---' H*-.-v-.-- E52»-ZZZ

€_‘;r--1

IZIBIIMW *-tI""'Iw-. Q-lijlafli-Q5

"'I:'.l*l.I'|-tfiv
|I"""\-‘H-I‘

Figure 22.1. Easy AMOS Editor.

Wot? No AMAL?
The most major omission compared with AMOS is the exclusion of
AMAL, one of the key animation tools in the AMOS arsenal. This is
more than compensated for by the Easy AMOS Tutor, which is a
most advanced programming tutor I’ve ever seen. The Tutor
features three windows: one for your AMOS code, one for variables
and expressions with their values, and finally a window with your
program output. The programs execute line by line so you can see
all the program's important little places whilst it is actually

Easy AMOS
M

running, meaning not only can you trap bugs but you can also see
how your program works. Teriffic. The Tutor can run at different
speeds too, so you can slow it down to see it all in action, or speed
it up to real time to check it all looks okay! It’s like a VCR for your

 reraa

= ' 1'1.’ . -‘H-.r-sq

Figure 22.2. Easy AMOS Tutor.

Simple Setup
Because it is a beginner’s program it won't allow you to run the
master program but it makes a working copy for you before you
begin. it does this automatically and, obligingly enough, it supplies
you with labels for your working disks. Once it’s all set up you have
three disks, one master program disk, one tutorial disk, and one
examples disk.
The examples are manifold, covering all manner of useful utilities
to show how AMOS copes with programming proper programs, such
as one of the example programs called AMOS Disk, for example,
which is a sort of disk utility clone like SID or Directory Opus.
A lot of other utilities are bolted onto the main system, rather than
being separate AMOS programs, so the Bob Editor (there are no
Sprites in Easy AMOS) is a menu option rather than a program you
load. Another snappy option which Easy AMOS has over

Mastering Amiga AMOS

conventional AMOS is the ability to load Soundtracker and
Noisetracker type tunes, using the TrackLoad command. This is
good news to everyone except the people who are writing programs
and procedures to make AMOS do this.
Of more interest still is another program to be included in the
package, a sort of progress tester. This is an AMOS program which
plays a kind of interactive quiz to see how well you are doing in
your quest to learn AMOS, by asking you questions and logging
your answers. In this way, you can see how much you are taking in
about AMOS. lf you pass a certain stage you get a diploma on
screen. This is another bit of zippy design for the younger user,
and is sure to go down well.
Easy AMOS is a foretaste of what you can expect with AMOS
Professional. Obviously the design is not by accident, and if you
added AMAL and Sprites to Easy AMOS it wouldn’t be that different
from the real thing. Both AMOS Pro and Easy AMOS will only run in
1Mb Amigas, which is one thing that willtmake a few people a bit
cross. Mind you anyone who’s still only running a half Mb machine
will run into this sort of thing all the time by now, so it’s not
AMOS’s fault but the onrush of technology. Besides, new Amigas all
have 1Mb on them, so no worries for complete Amiga beginners
who've only just bought their machine.

Bob’s Your Uncle
The Sprites have been dropped in Easy AMOS to make the program
easier to grasp. Like most reasons for changes in the Easy AMOS
environment, the change is for ease of understanding rather than
ease of use!
The original Sprite editor by Aaron Fothergill has long since passed
away and been replaced by SpriteX. So the time had come for a new
AMOS Bob Editor. When the original editor was released people
complained it was a little bit buggy. Not surprising really as Aaron
was writing the sprite program at the same time that Francois
Lionet was writing AMOS. More than a few revisions later the
program was expected to work, and all credit to Aaron it did, but
not nearly as well as it should.
Europress took all the suggestions for improvement to heart and
they’ve incorporated all the suggestions in the Easy AMOS Bob
Editor. Although not as good as SpriteX (particularly the new
version 2) the Bob Editor is definitely one of the easier movable
object editors around. The buttons are big and have very
descriptive pictures on them, and the program couldn’t really be
easier to use. But then that was the idea, eh?

Easy AMOS
M

Omissions
A lot of commands have been withdrawn from Easy AMOS, and the
reason for them being taken out is to prevent the user being
distracted from the task of learning. Some of the more technical
commands have been shed, and as I said before the highly complex
(it says here) AMAL has been axed too. Most of the changes I agree
with but a few are a bit mystifying. The disk font system is still in
place. All the joystick commands, like =_lUP, =JDOWN, =jRIGHT, and
=JLEFT in fact all except =JOY have been excised. The extremely
useful reserved variables Screen Height and Screen Width have been
dropped. Why? It's crazy but true.
Aaron Fothergill has come up with a routine to compensate for this,
namely:

SCRW=Deek(Screen Base+76)

SCRH=Deek(Screen Base+7B)
but I have to ask why did he need to? There was nothing wrong
with those variables so why the change? Perhaps the code was all
joined together like chewing gum, and they had to pull those
variables out with a few other things that were attached. Ah well.
The lack of AMAL is really more than compensated for by the fact
that you can compile Easy AMOS programs, of course, provided you
have the AMOS Compiler program and extension.

Nice Weather for Docs
Despite the wealth of internal tutorial matter, and programs to test
you and as examples. there is also a paper manual containing all
the information you'll want to know. I’m not much of a one for on
screen manuals anyway, so I was very pleased to see that Easy
AMOS has a manual to follow.
The manual has a funny cartoon character to appeal to the kids,
and it’s written by the writer and wacky ideas man Mel Croucher,
who also I seem to recall designed the funny character and wrote
the manual for the ill-fated Sam Coupé.
I‘m not convinced that this approach really works, and some kids
and older beginners might find this sort of thing a bit patronising.
But the content is okay, and in spite of my poking fun at Mr
Croucher's style, he has done a nice job on the manual, making it
easy to read and apply. (He did write the Pimania and Deus Ex
Machina games for the Sinclair Spectrum, so he can’t be all bad! Ah
those were the pioneering days, blah blah...) It is a little bit oddly
organised, but most of the people Europress tried it on were up and
running in a few moments.

Mastering Amiga AMOS

l
-1

Figure 22.3. Easy AMOS Disk.

lt’s Good, but is it Art?
I have to say that this is one of the best beginners programming
languages available, and l‘ve seen quite a few. AMOS is in itself an
easy approach to programming and so something which makes the
learning curve that much shallower is only to be welcomed with
open arms. The documentation is readable and nicely printed, the
program itself is easy to use, and the Tutor program is the most
powerful program utility for a small system ever devised.
This is the first time which a language has been used to create a
program to teach people how to use itself, and it’s a very well-
designed piece of Computer Aided Teaching. If you want to learn
AMOS fast then get this package without delay, as you’ll be able to
use all the utilities which come with the disk later, with your full-
blown version of AMOS.

/aI
23:
Where to
from Here?

Now you've read this book and
worked through the examples,
what can you do now?
Obviously making your own
programs based on the
examples in this book is the
first step to take, but more
developments are appearing
every day: new extensions,
new techniques for optimising
AMOS code, and all manner of
things like this.
As a for instance, these days
AMAL is put to use fairly
infrequently for any task apart
from simple animation, as it
has limitations, especially
when you intend to compile
your programs. Obviously if
your programs contain no
animation and are not games,
you will never use AMAL. This
is something that couldn't be
predicted when AMAL was
introduced, but this is the
trend looking at the kind of
programs I’m getting through
from the country’s AMOS
programmers and gurus. This
is just one example, and there
are many more things you
need to know about the state
of AMOS today.
Whereas many recent AMOS
books have been out of date
before they even come out,
this book is as up to date as it
could be. It was written very
rapidly and updated all the
way along so everything I've
said is state of the art, but
only for now. What you need

Mastering Amiga AMOS

in addition is a really good source of news and updates every once
in a while, and one of the best sources of up to date information is
the AMOS Club.

The AMOS Club
The AMOS Club has been going ever since AMOS was created, and
they are also programmers of AMOS extensions and technical
supporters of the program. They produce a regular newsletter and
disk containing all you need to know about the best in current
AMOS thinking, and if you have a question about AMOS then joining
the AMOS Club is the way you go about solving it.
The AMOS Club is also the home of Shadow Software, an AMOS
based software company run by Aaron Fothergill, the author of
CText, SpriteX, and TOME. Support for these programs is obviously
very up to date to all AMOS Club members, and you are also kept
abreast of any future programs which Shadow Software is working
on. Basically if you really want to know what is happening with
AMOS, you need to talk to the AMOS Club.

Totally AMOS
There’s a new disk magazine in town, and this time it’s totally
dedicated to AMOS. The Totally AMOS disk magazine is produced by
AMOS gurus Len and Anne Tucker and this is the first and indeed
only AMOS magazine on disk. This first edition, number 0, was
distributed via the Public Domain so that everyone can see what TA
is doing. The magazine is organised and programmed using AMOS,
and the articles and pieces of code/art/music are spooled together
using a specially written reader program, which gives you access to
all areas of the magazine using a nice original hypertext type
format. You can read the articles, play music, look at nice graphics
and animations, simply by clicking the mouse.
As a magazine TA is being aimed mostly at the beginners end of
things, although there are enough skilled contributors to the mag to
make it interesting for everyone whatever the level. There are
articles from many well known names on the AMOS scene: Sandra
Sharkey has written articles about Licenseware in her column
Sandra's Space, and future issues will (include contributions from
AMOS heads like Peter Hickman, Aaron Fothergill, and of course the
readers as well. There are articles on programming, reviews of
programs, hints & tips, for sale, program routines, graphics, music
files, sound samples, graphics, all manner of good things, and all
on disk too!

Where to from Here?

AmoNER
An addition to the already burgeoning disk magazine market is a
new AMOS disk mag from the US called AmoNER. The disk is
brimming with programs and reviews of AMOS products, plus info
on other US AMOS groups. To get a copy of AmoNER all you have to
do is send a blank disk, return packaging and an international reply
coupon, to:

AmoNER
13600 EDS Drive
MS ASN-BS1
Herndon
VA 22071
USA

You can email Michael Cox of AmoNER on:
aj639@Cleveland.freenet.edu. In Europe and Israel contact Gal-on
Broner, PO Box 5418, Beer-Sheva, Israel 84153. AmoNER can also be
obtained by anonymous FTP on the following Internet sites:

ux1.cso.uiuc.edu
nic.funet.fi
wuarchive.wustl.edu

If you want to submit any articles for the disk mag, then you can
get in touch with them at the above addresses and Email. Get a
copy of the mag and all the submission guidelines are on the disk
as one of the articles. I wish them the very best of luck, and
congratulate them on producing such a nice looking and
comprehensive mag.

PLAYFIELD!
Also (via the nice chaps at AmoNER) news has reached my ears of
another US AMOS mag called PLAYFIELD!. It describes itself as the
journal of creative Amiga programming with AMOS. It features quite
a few articles and many good examples, as well as a disk with all
the source that appears inside the newsletter. Ryan Scott, editor of
PLAYFIELD!, has allowed AmoNER to use a few of PLAYFIELD!’s
example programs in its disk mag. The Starfield Generator program
from issue 6 of AmoNER is taken straight from the first issue. This
attractive HiRes+Laced routine is quite beautiful and can be applied
nicely on all sorts of space games. For more information on
PLAYFIELD, send a SASE to:

Mastering Amiga AMOS

.|| PLAYFIELD!
I 5180 NE 6th Ave Suite 624
| Ft. Lauderdale
' FL 33334

USA

AMOS Columns
There are AMOS columns in a number of Amiga magazines, and
obviously I would tell you that my own in Amiga Computing is the
best. It’s more tutorial based than the others, and it also has the
benefit of having the programs on disk.

_ That bit of ego massage aside there are similar columns in other
; magazines like Amiga Format, Amiga User International and CU

Amiga. Check out the columns for tutorials, up to date news and
. info on everything AMOS.

Contacts
AMOS The Creator, Easy AMOS, AMOS Professional, AMOS Compiler,
and AMOS 3-D can be obtained from your local stockist or from:

Europress Software
Europa House
Adlington Park
Macclesfield
SK10 4NP

| Tek(O625)859333

AMOS Club
The AMOS Club
1 Lower Moor
Whiddon Valley
Barnstaple
North Devon
EX32 8NW

I

Totally AMOS
Totally AMOS
1 Penmynydd Road
Penlan
Swansea
SA5 7EH

AMOS Licenseware
Deja Vu Software
25 Park Road
Wigan
WN6 7AA
Tel: (0942) 495261

AMOS PD
AMOS PD Library

1 Penmynydd Road
Penlan
Swansea
SA5 7EH

17 Bit Software
PO Box 97
Wakefield
WF1 IXX
Tel: (0924) 366982

Where to from Here?
 .

Mastering Amiga AMOS

g
e
A:
AMOS
Error
Messages

Sometimes you’ll get an error
message in AMOS. Usually it's
just that you’ve forgotten to
type something in, or AMOS
can't figure out what it is you
are trying to do. AMOS is a
fairly forgiving language on
the whole, as you know, for
example when you type in a
load of rubbish like this:

screenopeni,320,200,16,1owres

AMOS will automagically tidy
it up to read:

Screen Open 1,32o,20o,16,Lowres

so a lot of problems are
nipped in the bud when you
type the commands in at first.
But this smart sensing of
commands sometimes leads to
problems in itself. If the
command you type in turns
up in capital letters instead of
having a leading capital and
then lower case like all AMOS
commands, that is to say:

THIS

instead of:

This

AMOS has interpreted the
word as a label rather than a
command. There are a few
potential reasons for this.
Either you’re using the
command in the wrong way or
you’ve typed it incorrectly. Or
perhaps you don’t have the
appropriate extension
installed, if for example the
command you typed is for a
particular extension like
CText.

Mastering Amiga AMOS

I But sometimes you get an error (you know how it is) and you just
can't make the thing go away. What do you do? Turn to this
appendix of course.

- Most of the messages are pretty much descriptive in themselves,
but here I've just explained basically what it means in English and
given a suggestion about why it happened and what you can do
aboutit
Note: most of the references to disks in AMOS are spelled disc. I
always use the spelling disk, to distinguish a floppy disk from a
Compact Disc. I've left the spellings of error messages as is, but in
my definitions a disk is a disk.

AMOS Error MessagesI

| 256 characters for a wave
You've tried to define a WAVE and you’ve either fed the command
too few or too many numbers. Look at your definition and see
where the numbers are going.

Address error
_ An address used in a DOKE, DEEK, LOKE or LEEK command is wrong.
I Check your data.

Animation string too long
Your AMAL program on a particular channel is more than 65536

, bytes. Split the AMAL program into two programs and run on
different channels.

Array already dimensioned
A DIM command is trying to dimension an array which you've
already opened. Perhaps the loop in your program is going back too
far towards the start of the program, and perhaps you ought to
move it to miss the DIM.

Autotest already opened
You've tried to run Autotest again, so either you've looped back to
the original Autotest command or you've put it in twice.

BAD IFF format
That IFF file is either corrupted or not in a format that AMOS can

- understand. IFF ILBM images are the only kind of IFF file that AMOS
! likes to load.

Bad structure
You've not nested your loops together properly. FOR NEXT, or DO
LOOPs must always be one inside the other, so you can't do this:

AMOS Error Messages
L

D0

For I=1 To 10
Loop
Next I

Check your loops to see which ones are crossed.

Bank already reserved
Clearly you’ve tried to reserve a bank which is already reserved.
Banks 1-4 are usually already taken with the music and graphics for
your program, for example.

Bank not reserved
You tried to access a bank which hasn't been created with the
RESERVE command. Also happens if you try to use a bank like Icon
or Sprite banks which have nothing in them.
Block not found
This block has not been created with GET BLOCK.

Bob not defined
You have tried to use a Bob which has not been defined at any
point.
Bordered windows not on edge of screen
You have tried to position a window right next to the edge of the
screen. Windows need eight pixels space for their borders.

Bottom of text
In the editor you are pushing the cursor against the bottom of the
window and there's no more code to look at.

Can’t fit picture into current screen
You've tried to load an IFF picture to a screen which isn't the same
format. Tag a ,n (where n is a new screen number 0-7) to the
command and AMOS will open an appropriately sized screen.

Can't fit program into editor buffer
The space allocated for source code in the editor is set to a certain
value. If a program is loaded which is bigger than the editor buffer
you have to increase the buffer size in the Config.AMOS file.

Can't open narrator
The device governing speech production on the Amiga isn't present
or cannot be found for some reason. Check the boot disk to see if
the narrator.device is in the devs directory.

Mastering Amiga AMOS

Can’t resume to a label
You can’t use the RESUME label in an error procedure.

Can't set dual playfield
You've tried to employ dual playfield mode with a pair of screens
which are not appropriate to that mode. Look more carefully at the
instructions in the AMOS manual about dual playfield.

Copper list too long
The normal sized copper list is 12K, and you've made a bigger list
than that. You can expand it using the Config.AMOS accessory.

Copper not disabled
Before using COP MOVE or COP SWAP you must turn off the Copper
with COPPER OFF.

DATA must start at the beginning of a line
Any DATA statements you have in your program must be the first
text on any program line, excluding labels.

Device not available
You have tried to refer to a device (disk or other logical device
name) which isn't currently mounted. Is the disk in the drive?

Directory not empty
You have tried to erase or KILL a directory which is not empty.

Directory not found
The directory you have asked for isn't anywhere to be found. Is the
disk in the drive? Have you typed the name of the directory
incorrectly?

Disc full
Yep, you can't fit anything else on this disk. Either erase something
from the disk or format a fresh one.

Disc is not validated
Some kind of error has corrupted the data temporarily on this disk,
and the disk-validater can't get to it or isn't on the boot disk for
some reason.

Disc is write protected
Adjust the little tab in the corner of the disk and you can write to it.
Or perhaps you write protected the disk for a reason? Check which
disk you are writing to, it might be important.

AMOS Error Messages
 |

Division by zero |
Divide by zero? That s a mathematical no-no. One of your variables
has dropped unexpectedly below zero so check your loops.

DO without LOOP
You forgot to type a LOOP command at the end to seal up your
loop.

ELSE without ENDIF
Another loop which isn’t closed.

ELSE without IF
Another loop which isn’t closed.

End of file
A file ended before expected during a disk operation, a situation
you can test for in your programs using EOF function.

End of program
This is the message you get if your program finishes, that is to say
the last instruction is executed and the program comes to a close.

ENDIF without IF
Another loop which isn’t closed.

Error not resumed
The program has exited without resetting the error with RESUME.

Error procedure must RESUME to end
You must not exit from an error with END PROC, you must reset the
error with RESUME.

Extension not loaded
The command you've used is only available with a certain AMOS
extension installed. CText, AMOS 3D, AMOS Compiler, TOME, all
need to be installed before the commands can be used.

File already exists
If you try to rename a file on disk to a name which already exists on
the disk you’ll get this message. Save the file as TEMPORARY or
something like that, and then get back to AmigaDOS and sort out
the file names.

File already opened
You are using OPEN or APPEND on a file which has already been
opened.

Mastering Amiga AMOS

File format not recognised
This happens when you try to LOAD something which isn't an AMOS
memory bank. If you are wanting to load an IFF picture use LOAD
IFF.

File is protected against deletion
The protection bits have been set on this file, protecting it from
deletion.

File is protected against reading
The protection bits have been set on this file, protecting it from
being read. Stupid idea, but there you go!

File is write protected
The protection bits have been set on this file, protecting it from
being written to.

File not found
The file you’ve asked for cannot be found on the current path.
Either the disk with the file in it isn't mounted or the path you
specified is wrong. Check it.

File not opened
You've tried to action a file or change a file which hasn't yet been
opened.

File type mismatch
A command has been used which is not allowed for the file you've
specified. Check the type of file you are working on and look up
which commands are appropriate to work with it.

Flash declaration error
The animation for the FLASH command is wrong. Check the values
and redefine.

Fonts not examined
Before you use the SET FONT command you must first use GET
FONTS, GET ROM FONTS or GET DISC FONTS.

FOR without matching NEXT
You have constructed a loop containing a FOR but not a NEXT.

IIO Error
One of the files you are trying to use is corrupted for some reason.
Check the file and if necessary use another copy of it. You may be
able to salvage some files using a PD program called DiskSalv.

AMOS Error Messages

Icon not defined
The Icon you are trying to use is not in the current Icon bank
(usually bank 2). Either you have the wrong Icon bank loaded, or
you've moved it to another location.

IF without ENDIF
An IF ENDIF loop in your program has no terminating ENDIF.

IFF compression not recognised
The form of compression used on this file is non-standard. Load it
into the program in which it was created and save it as a standard
IFF file. If you can't do that then load the file into the program and
grab it with either a software screen grabber like ScreenX or a
hardware device like Action Replay.

Illegal block parameters
You have made a mistake with the figures you've fed to a PUT
BLOCK or GET BLOCK command. Check them, and whichever
variable is responsible.

Illegal copper parameter
The values in a COP MOVE or COP MOVEL are out of the range of the
command. Check them and retype.

Illegal file name
You have tried to use a filename which is not legal in AmigaDOS.
Try another one, and check you AmigaDOS guide for details about
proper filenames.

Illegal function call
A popular error this one. Basically if you put too few or too many
parameters into an AMOS command, you'll get this message. Check
the manual for the correct number of parameters for the command.

Illegal instruction during autotest
You've used a regular AMAL command in an Autotest, probably
you've placed your brackets wrongly.

Illegal number of colours
You've selected the wrong amount of colours when opening a
screen. Remember that you can use up to 4096 in HAM, 32 in
Lowres, 16 in Hires and Laced, and only 2-4 in some of the new
Super-Hires and productivity-modes which aren't quite
implemented yet!

Mastering Amiga AMOS

Illegal number of parameters
You've fed the wrong number of parameters to a function or
procedure. Check any variables you might be running to see what
values they're holding. You might be going around a loop one too
many times.

Illegal screen parameter
A screen size has been defined which is outside the minimum or
maximum allowed. Check your SCREEN OPEN command for size.
The minimum is 32x8 and the maximum is governed by the amount
of memory you have.

Illegal window parameter
You've fed the wrong numbers to a window command. Check your
loops and variables to see if you're accidentally looping too much
or sending the wrong variables to the wrong command.

Input too long
An input string is too long, over 1000 characters.

Instruction only valid in autotest
Direct or Exit are only valid inside AMAL as part of an Autotest
routine.

Jump tolwithin autotest in animation string
Your AMAL program has jumped into an Autotest routine, which
isn't allowed. Autotests shouldn't be connected to your main AMAL
programs.

Label already defined in animation string
You've accidentally defined the same label twice in an AMAL
program. Not to be confused with the following case.

Label defined twice
Different from the last error. You've accidentally defined the same
label twice in an AMOS program.

Label not defined in animation string
In order to use a label you first have to define it. This is the AMAL
version of the error.

Label not defined
The label you have used has not been defined. Either you typed it
in wrongly or you forgot to create the label. This is the AMOS
version of the error.

Line too long
The editor can only handle lines of 255 characters in length.

AMOS Error Messages
 .

LOOP without DO
The reverse of the DO without LOOP error. You've put a LOOP in the
program with no DO to close the loop.
Menu item not defined
The menu you've chosen has not been defined with MENUS.

Menu not opened
You called a menu with MENU ON, but no menu exists. You need to
define a menu with MENUS or MAKE MENU BANK.

Music bank not defined
You've tried to access a music bank which is empty. Either the
music is in another bank or you've forgotten to load the bank.

Music bank not found
The music can't be played with MUSIC because you have no tunes in
the banks.

NEXT without FOR
Like FOR without NEXT, except this time you've forgotten to put a
FOR at the beginning of the loop.

Next without For in animation string
Same as the last error, only this time you've forgotten to put a FOR
before a NEXT in an AMAL program.
No data after this label
The RESTORE command has tried to get data from a set of lines
which don't contain DATA statements.

No disc in drive
Either the disk in question isn't mounted in a drive or you didn't
wait a few seconds for the disk to be recognised. Try again now the
disk has settled down.

No errors
This is not so much an error message as an alert. You test your
program and this is usually the result unless you get an error. Mind
you, simply just because there is no error of syntax doesn't mean
the program will work, you have to find the bugs and fix them
yourself. Sorry about that.

No jumps allowed into the middle of a loop
You can't jump into the middle of loop, using for example a GOSUB
orGOTO.

Mastering Amiga AMOS

No ON ERROR PROC before this instruction
You can only use RESUME LABEL after an ON ERROR PROC.

No programs below current program
The program you are running is not installed as an accessory, and
you’ve attempted to use BGRAB. Reload the program as an Acc.
No Tl-IEN in a structured test
IF but no THEN in a structured test. Similar problem to other loop
errors. Check your structure.

No zone defined
You've tried to act upon a Zone which has not been defined. Define
it properly and try again.

Non dimensioned array
A variable is either wrongly typed to look a bit like an array, or
you've forgotten to dimension the array in question.

Not a packed bitmap
You've tried to unpack a bitmap file to a screen and the file you are
trying to unpack isn't in a packed bitmap format.
Not a packed screen
The data you are trying to unpack is not a packed screen format.
Not a procedure
You've tried to UNFOLD a procedure but the cursor isn't on a
procedure. Reposition the cursor and try again. Either that or the
procedureislocked!

Not an AmigaDOS disc
The disk you have tried to access is either corrupted or not an
Amiga disk.

Not enough loops to exit
The loop count in an EXIT or EXIT IF loop is greater than the
number of active loops in the program.

Not found
The search you just carried out did not find the characters you
specified. Either they aren't there or you need to be more specific.
Have you set upper and lower case?

Not marked
You can't move to a mark until you've set some markers.

AMOS Error Messages

Out of buffer space
You've run out of space in the editor. Save your program, and use
S.BUFFER in the Search menu.

Out of data
The READ command has run out of bits of DATA to read. Count the
amount of data you have in the DATA statement, and start again.

Out of memory
Just what it says. You haven't got enough memory to do what you’re
doing, loading big pictures in Hires Lace, whatever. Go and buy
some more memory or run a smaller program. You can CLOSE
WORKBENCH, or CLOSE EDITOR to save a good bit of space. During
a test the AMOS interpreter may run out of variable space.

Out of stack space
This error is due to nesting too many PROCs together. Spread them
out a bit and it should go away. You'll have to rethink the structure
of your program.

Out of variable space
The variable buffer is set to 8K by default, and if you get this error
you need to use SET BUFFER to increase it.

Overflow
A calculation has exceeded the maximum size of a variable. Check
the calculation to see how high it’s going and why.
POP without GOSUB
POP can only be used to exit from a routine entered by GOSUB. To
exit from a PROC use the POP PROC command.

Procedure not closed
You've created a PROC but not terminated it with END PROC.

Procedure not opened
You've used END PROC but not opened the PROC with a PROCEDURE
command.

Procedure’s limits must be alone on a line
You can't have anything else on the line. Break it up.

Program interrupted
This is the message you get when you end a program with a BREAK
or <Ctrl-C>.

Mastering Amiga AMOS

Program not found
The program you’ve tried to run with PRUN has not been loaded
with LOAD OTHER.

Rainbow not defined
Before you use RAINBOW you must first use SET RAINBOW to define
the rainbow.

REPEAT without matching UNTIL
A loop error with a REPEAT at the start of your routine but no
corresponding UNTIL.

Resume label not defined
You have tried to RESUME to a label that doesn't exist.

Resume without error
You can't use RESUME without an error. That's to say you can't fake
an error with it, one has to have actually happened.

RETURN without GOSUB
You've somehow ended up at a RETURN without having got there
with a GOSUB. Check back and see what's happened to your GOSUB
and you'll probably find you either forgot to put it in or you deleted
it and forgot to delete the RETURN.

Sample bank not defined
You can't play a sample unless it exists in the sample bank.

Sample bank not found
There is no sample bank in memory.

Screen already in double buffering
You've clearly tried to set up DOUBLE BUFFER twice for some
reason. Perhaps a loop has sent you around to the same command
twice.

Screen not in dual playfield mode
The DUAL PRIORITY command can only be used once the screen is
in DUAL PLAYFIELD mode.

Screen not opened
You can only go to a screen and do something with it if it has
actually been opened with SCREEN OPEN.

Screens can’t be ANlMated
You can move or scroll screens but you can’t animate them with
AMAL.

AMOS Error Messages
-

Scrolling zone not defined
Before using SCROLL, you must first define the area you wish to
scroll with SET SCROLL.

Shared must be alone on a line
Shared variable definitions must be on a line on their own.

Shift declaration error
This error tells you there has been a mistake with the SHIFT UP or
SHIFT DOWN statements.

Sprite error
You've fed the wrong figures into a sprite definition.

String too long
You have exceeded the limits for the length of a string which is
65000.

Syntax error in animation string
Your AMAL program has a syntax error.

Syntax Error
There is a syntax error in your program. The command specified is
not an AMOS keyword or you’ve used the wrong number or type of
parameters.

This array is not defined in the main program
The array in the procedure has not been dimensioned in the main
body of the program.
This instruction must be used within a procedure
The SHARED command can only be used inside a procedure
definition.

This variable is already defined as SHARED
You have tried to define a variable as shared twice.

This window has no border
You have tried to employ the BORDER command on a window which
has no border.

Too many colours in flash
The maximum number of colours in a flash command is 16.

Too many direct mode variables
Direct mode allows you to create up to 64 variables, but this is
restricted if memory is low.

Mastering Amiga AMOS

Top of text
In the editor you are pushing the cursor against the top of the
window and there's no more code to look at.

Type mismatch
The wrong kind of data has been assigned to a variable, for example
a string has been assigned to a variable lacking the $ symbol.

Undefined label
You've tried to go to a label which does not exist. In order to move

| to a label you must first create it.

Undefined procedure
You've tried to use a procedure which has not been defined.

| UNTIL without REPEAT
Another loop error, this time you've left off the REPEAT or deleted it
in error.

" Use empty brackets when defining a shared array
I The definition of a shared array should be followed by a pair of

empty brackets.
Valid screen numbers range from O to 7
You've tried to open a screen with a number greater than 7.

Variable buffer can't be changed in the middle of a program
I think that says it all. Why aren't AmigaDOS errors that descriptive?

Variable buffer too small
Use the SET BUFFER command to alter the amount of variable space.
Variable name buffer too small
Use Config.AMOS to change this.

Wave 0 and 1 are reserved
These two waves are reserved by AMOS for the BELL and NOISE
commands and cannot be changed.

WEND without WHILE
Loop error. You've added a WEND to your program without a WHILE
to start it off.

What block?
You've tried to perform some kind of block operation and there is
no marked block.

AMOS Error Messages

WHILE without matching WEND |
Loop error. You've got a WHILE in your program but have not
closed the loop with WEND. i
Window already opened I
You've tried to open a window which is already open.

Window not opened
You've tried to do something to a window which isn't open or hasn't
been defined.

Window too large |
The window size you've specified is too large for the current
screen, and this isn't allowed. |

Window too small
The current window is too small. The smallest size you can define a
window to is 3x3. -

Mastering Amiga AMOS

ée
B:
Some
Useful
Programs

This appendix is all about
programs and routines, and
also some hints and tips to get
you back on the road when
something's going wrong and
you can't figure it all out. It's a
bit of a grab bag, but then I
think that makes it more fun,
don’t you? These programs
are some of my own work, and
part unattributed guff off
bulletin boards, and part code
that people have sent me for
publication in my AMOS
columns which never made it
in full or even at all. My
thanks to all the contributors
who ever sent me programs to
print, and I'm only sorry I
can't print them all. Especially
thanks to the likes of Steve
Bennett for his Lazerzone
game, which although very
good was very long, even for
inclusion here. People
produce some very nice stuff
on AMOS these days. If you’d
like to submit super programs
for the next edition of this
book, why not send mail to
me at Bruce Smith Books?
Here is a simple example of
how to do a game without any
graphics. It's based on the
popular Daleks game on the
Apple Macintosh and, despite
being very simple, it is very
addictive.

Rem *
Rem

Mastering Amiga AMOS
,

Chase.AMOS *

Screen Open 0,640,200,16,Hires
Paper 0 : Pen 4 : Hide : Curs Off : Cls 0
Locate 0,0 : Centre "Chase"
Locate 0,5 : Centre “AMOS Version @1993 Phil South"
Print : Print : Print
Print "You are within the walls of a high voltage
IIIGZO - There are five security "
Print "machines trying to destroy you.“
Print " You are the ‘*’. The interceptors are the
‘+’. The areas marked ‘X’ are highvoltage. Your only
chance for survival is to manouver each interceptor
into an ‘X’. —-Good Luck--"
Print
Print
Print
Print
Print
Print
Print
Print
leap"
Print

Print

"Moves are: 7.8.9"
“ 4.*.6“
" 1.2.3"

II-10

"-1 = Give up, situation hopeless"
II 0

= No move until the end of the game"

= A tremendous (but unfortunately random)

: Print "<press a key>" : Wait Key

Dim A(10,20),A1(10,20),N(12),L(5),M(5),L1(5),M1(5)
190 Rem
For B=O To 10

For C=1 To 20
X=Rnd(10)
If X=5 Then 270
A(B,C)=Asc(" ")
Goto 280
270 A(B,C)=Asc("X")

280 Next C

Next B
For D=1 To 10

A(D,1)=Asc(
Next D
For F=1 To 20

A(1,F)=Asc(
Next F
Goto 410
370 H=Rnd(8)+2
I=Rnd(18)+2
If A(H,I)<>Asc
Return
410 Gosub 370
A(H,I)=Asc("*"
J=H : K=1

For N9=1 To 5
Gosub 370
A(H,I)=Asc(
L(N9)=H = M

Next N9

For B1=1 To 10
: Next B2 : Ne

FOP B1=1 T0 5
B1

J1=J : K1=K
530 Y9=0
540 For D2=1 T

For B2=1 To
N$=Chr$(
Print N$

Next B2
Print

SonueDbefiuiPrognannr

"X") : A(D,20)=Asc("X")

"X") : A(10,F)=Asc("X")

(" ") Then 310

)

.+.)
(n9)=1

: For B2=1 To 20 : A1(B1,B2)=A(B1,B2)
xt B1

: L1(B1)=L(B1) : M1(B1)=M(B1) : Next

o 10
20

A(D2,B2))
I
I

Next D2

If Y9<>1O Then 640

Print
Goto 890
640 Input Y9
J2=J : K2=K

Mastering Amiga AMOS

If Y9=O Then 860

If Y9<0 Then 1230
If Y9=10 Then 1010
On Y9 Goto 320,a00,1a0,a40,a90,1s0,100,120,140
700 J=J-1 : K=K-1

Goto 890
720 J=J-1

Goto 890
740 J=J-1
Goto B90
760 K=K+1
Goto 890
780 J=J+1
Goto 890
800 J=J+1

Goto 890
820 J=J+1
Goto 890
840 K=K-1

Goto 890
aeo Print "$6,000,000 jump'll
J=Rnd(8)+2
K=Rnd(18)+2
890 If A(J,K)=Asc(x) Then 1260

K=K+1

K=K+1

K=K-1

A(J2,K2)=Asc(" ")
A(J,K)=Asc("*“)
Goto 1070

‘ Interceptor movement
940 If A(X,Y)=Asc(“X“) Then 1040
X2=X : Y2=Y

X=Sgn(J-X) : Y=Sgn(K-Y)
X=X+X2 : Y=Y+Y2

If A(X,Y)=Asc("*") Then 1050
If A(X,Y)=Asc(“ ") Then 1020
A(X2,Y2)=Asc(" ")
Return

1020 A(X,Y)=Asc("+“)
A(X2,Y2)=Asc(“ ")
1040 Return
1050 G9=99
Return
1070 For N9=1 To 5

X=L(N9) = Y=M(N9)
G9=0
Gosub 940
If G9<>0 Then 1240
L(N9)=X : H(N9)=Y

Next N9

For N9=1 T0 5
If A(L(N9),M(N9))<>Asc(" ") Then 1170
A(L(N9),M(N9))=Asc("+")

1170 Next N9

For N9=1 T0 5
If A(L(N9),M(N9))<>Asc("X") Then 540

Next N9

Print “You have destroyed all your opponents - The
game is yours"
Goto 1290
1230 Print "Give up, eh?“

SonueLBefiulP7ogranu:

Mastering Amiga AMOS

1240 Print "*** You have been destroyed by a lucky
computer ***"
Goto 1290
1260 Print "HIGH VOLTAGElllIllI"
Print "***** ZAP ***** Y0u’re dead!!!"
Print
1290 Print "Another game (Y/N)";
Input N9$
If N9$<>"Y" Then 1400

Print "Same setup (Y/N)“;
Input N9$
If N9$<>"Y" Then 190

For B1=1 T0 10 : For B2=1 T0 20 : A(B1,B2)=A1(B1,B2)
: Next B2 : Next B1
For B1=1 To 5 = L(B1)=L1(B1) : M(B1)=M1(B1) = Next
B1
J=J1 : K=K1
Goto 530
1400 End

This simple program chooses a random letter of the alphabet, a
' new idea based on the principle of choosing random numbers.

Paper 0 : Cls 0
D0

Print Chr$(Rnd(25)+65);" “,
Wait 2
Loop

This program prints out a list of alien names using the above
pfinchfle.

Screen Open 0,640,200,16,Hires
Paper 0 : Cls 0
D0

Print “My name is ";
Print Chr$(Rnd(25)+65);
For A=O T0 4

'—I-Iiil

Print Chr$(
Next A
Print " from P
Print Chr$(Rnd
For A=O To 4

Print Chr$(
Next A

Print
Loop

This program produces a meter which rises slowly from empty to
full. Use it in your adventure games, or in arcade games which use

|oxygen or energy levels.
Rem ** AMOS Meter
Rem ** 1993 Snout
Rem
Rem

Curs Off : Hide :
Centre "- Fill
Ink 5 : Box 38,18
Ink 4
A=4O : B=20
For J=0 To 200

If J=5O Then B

If J=100 Then

If J=15O Then

For I=O T0 10
Plot A,B+I

Next I
Inc A

Wait 3
Next J

SonneLhm1hlProgranui

Rnd(25)+97);

lanet ";
(25)+65);

Rnd(25)+97); _

ii

‘kit’

Ink 4 : Paper O : Cls 0
‘er up! -"
To 242,32

ell : Centre "- Quarter Full!

Bell : Centre "- Halfway there!

Bell : Centre "- Three Quarters!

Mastering Amiga AMOS

Centre "<- Finished! ->"
Bell
Wait Key

This one does a busy pointer like you get on IBM machines. Assign
each frame of the animation to a sprite and attach it to the pointer
for the full effect.

Curs Off : Paper 0 : Cls 0
Dim A(4)
For Z=1 To 4 : Read A(Z) : Next Z
Do

Locate 15,15
Print Chr$(A(B))
Inc B
If B=5 Then B=O

Wait 3
Loop
Data 124,92,137,47

How about this neat routine for getting vertically scrolling centred
text? The text in the DATA statements is centred and scrolled up
the screen, and it's also faded in and out at the top and bottom by a
Rainbow.

Rem * Vertscroll.AMOS *
Rem
Rainbow Del : Auto View Off : Hide

Restore TEKST : Read N : Dim TE$(N)
For x=1 To N = Read TE$(X) : Next

Screen Open 0,640,N*8+256,2,Hires : Curs Off : Cls 0
Colour O,$O : Colour 1,$O
SPEED=0

For I=1 To N : Centre TE$(I) : Print : Next

Set Rainbow 0,1,s000,"(1e,1,1o)","(1e,1,1e)","(1o,1,1o)"
EFX

Rainbow 0,,0,256
Screen Display 0,128,300,320,255
Auto View On

Repeat
Screen Display 0,,280,,
Screen Offset 0,0,0
For Y=280 To 40 Step -1

If SPEED>0 Then Wait SPEED
Wait Vbl
Screen Display 0,128,Y,320,258

Next
For Y=O To N*8

If SPEED>0 Then Wait SPEED
Screen Offset 0,0,Y
Wait Vbl

Next

Wait 100
Until Inkey$<>""
End
TEKST

Data 64-36

Data
Data

Data

Data
Data
Data

Data

Data

Data

Data

Data

"—o0000o0—-"

"Hello there!"

"Welcome to the Vertscroller"

"Specially made by KV"

"and freshly baked by Phil Snout." |

"AMOS allows you to do many things

iflnnellnflhlirogranur
IIIIIIIIIIIIIIIIIII

Data
Data

Data
Data
Data
Data

Data
Data
Data

Data
Data
Data
Data
Data
Data
Data
Data

Mastering Amiga AMOS

...and this is one of them!"

“And using only simple AMOS Basic instructions "
ll ll

ll * ll-00 00-

That's all we have time for now See you later

“Original code by KV “
92 version by Phil South

Produced by Bruce Smith

Okie dokie artichokiel"

-000-
ll-O-ll

Procedure EFX
C

For L=0 T0 127 Step B
For X=O To 7

Rain(0,L+X)=C
Next

C=C+$111
Next

C=$FFF
For L=128 To 255 Step 8

For X=O To 20
Rain(0,L+X)=C

Next

C=C-$111
Next

End Proc

Sonu:LBefinlProgranu=

AMOS has the remarkable ability to store items of code (like sounds
and screens and music) as part of the AMOS program itself, so
rather than loading in IFF sounds or pictures you can load and save
them as special format .abk files, and this is an especially good
method for using IFF screens in your own programs. But the
screens have to be packed with the SPACK command, and this
means writing your own program to do this. Yes, packing and
unpacking screens can be such a bore, so why not use this utility
program to take all the slog out of it? Why not, indeed.

Rem * Spack me.AMOS *
Rem
Screen Open 0,320,16,2,Lowres
Curs Off
Flash Off
Colour 1,$FF
Screen Display 0,,40,,8

TEN:

Screen Open 1,320,20o,2,Lowres : Screen Hide 1

TWENTY:

F$=Fse1$("“,"","Load IFF Picture To SPACK“) : If F$="“
Then Goto TWENTY
If Exist(F$) Then Screen 0 : Centre "Loading IFF Picture“
: Print : Load Iff F$,1 : Else Goto TWENTY
Screen 0 : Centre "Spacking Current Picture..." : Print :
Spack 1 To 6 : Screen Close 1

THIRTY:

F$=Fsel$("","","Save Spacked Bank") : If F$="" Then Goto
THIRTY
Screen 0 : Centre "Saving Spack bank to disk" : Print :
Save F$,6 : Erase 6 : Centre “Press Key To Continue..."
Print : Wait Key : Goto TEN

Then all you have to do is load the .abk bank in direct mode, and
the screen will be in a memory bank in the AMOS program ready for
you to unpack to the screen of your choice. Simple and yet very
effective.

Mastering Amiga AMOS

In the AMOS manual it tells you that LLIST will give you a hard copy
of the program currently in memory. This turns out not to be the
case, so how can you get a hard copy of your programs, for
debugging? Well, first mark the whole program text with the
<Ctrl-A> short-cut keystroke, then hit <Ctrl-F10> to print your
program out to your connected Prefs printer.
If you’re directing your own science fiction movie (and why not?
Steven Spielberg had to start somewhere) some special effects are
very easy to do. Like this one, which does a fair impression of a
radar screen, with the sweeping green scan line rotating around the
screen. The program keeps going until you press a mouse button.
Can you alter the program to give an occasional green trace which
fades after being revealed by the scan line? Of course you can.

Rem * RadarLove.AMOS *
Rem
Degree
Screen Open O,320,256,2,Lowres : Curs Off : Colour 1,$FO
: Colour 0,0 : Ink 1 : Cls O
Double Buffer : Autoback O
D=18O

S=3
Repeat

For ANGLE=359 To 0 Step -S
XP=D*Sin(ANGLE)
YP=D*Cos(ANGLE)
Cls
Draw 160,128 To 160+XP,128+YP
Screen Swap : Wait Vbl

Next

Until Mouse Key

There are some built-in patterns in AMOS, which can enhance your
programs if used properly. This program helps you to try out the
pattern types, and lets you display them in all manner of different
colour combinations. You are prompted at all stages of the
operation, so no further explanation is necessary. Can you alter the
program to display a pattern and let you try different colours on
the pattern more interactively than this? All you need is an extra
routine and a couple more keys to stab.

1E

ft
4
(

'I—'I'IFI'n'P-IEJIQII-IJF\'11-1

i

-inq—u-um.-

.!

Rem * GeneralPattern.AMOS *
Rem
Screen Open 2,35O,350,32,L0wres

SonueLBefiulP7ognanu:

Colour O,$0 : Colour 1,$FFF : Colour 2,$F
Pen O : Paper 1
Curs Off : Flash Off
ST:

Cls 1
Locate 2,2 : Print Space$(30)
Locate 2,2 : Input “Select Patte
P=Val(P$)
Locate 27,3 : Print "Pattern ";P
Locate 2,2 =
Locate 2,2 :
C=Val(C$)
Locate 27,5 : Print "Colour “;C
Ink c = Box 50,50 To 200,200
Locate 2,2 : Print Space$(30)
Locate 2,2 : Input "Ink ";I$
I=Val(I$)
Locate 27,7 : Print "Ink ";I
Locate 2,2 : Print Space$(30)
Locate 2,2 =
O=Va1(O$)
Locate 27,9 : Print “Paper ";O
Locate 2,2 : Print Space$(30)
Locate 2,2 : Input "Border ";B$
B=Val(B$)
Locate 27,11
Ink I,0,B
Set Pattern P : Set Paint 1

Print Space$(30)
Input "Enter colou

Input "Paper ";O$

: Print “Border “;

I“

rn O to 34 ";P$

O to 31 ";C$

Mastering Amiga AMOS

Bar 50,50 To 200,200
Locate 2,26 : Input "Press Return to Continue or E to
Exit";A$
If A$="E" Then Cls O : Edit
If A$="e" Then Cls O : Edit

Goto ST

This is a simple but effective colour selector program which
appears on the current screen after saving its background colour. It
waits for you to select a colour and returns the colour's number as
a parameter. Original program written by Gary Fearn.
Rem * ColourSelect.AMOS *
Rem
Flash Off : Curs Off
noow1uo0w[120,20,12]
_COL=Param
Print " You have selected colour ";
Pen _COL
Print _COL
Wait Key
Edit

Procedure RGBWINDOW[X,Y,SIZE]
NCOLS=Screen Colour
Get Cblock 1,X-10,Y-

10,X+(SIZE*2)+10,Y+(SIZE*NCOLS/2)+1O
Bar X-8,Y-8 To X+(SIZE*2)+8,Y+(SIZE*NCOLS/2)+8
Reserve Zone NCOLS+1
For o=o To NCOLS/2 step ucots/2

For A=O To(NCOLS/2)-1
Ink A+B : Bar X,Y To X+SIZE,Y+SIZE

Set Zone A+B+1,X,Y To X+SIZE,Y+SIZE

Add Y,SIZE
Next A

Some Useful Programs

Add X,SIZE
Add Y,-(SIZE*(NCOLS/2))

Next B

AGAIN:

While M=O

X=Mouse Zone
M=Mouse Key

Wend
If X=O Then Goto AGAIN

Put Cblock 1
Reset Zone
RGB=X-1 : Rem RGB = selected colour

End Proc[RGB]

You'll often find that you need a Bob or Sprite to appear at a
specific location. Also since you sometimes need to flash or change
colours, you need to know which colour is at which location in the
current palette. For this reason Terry Aston wrote this short tool,
which loads up the background scene, and picks up your Bob/Sprite
so you can position it exactly on the screen while showing the
hardware coords. Click the Sprite in place, and it gives you the
screen coords. Now you can use the two menus to select the screen
and Sprite palettes. Highlight the colour you want to alter and the
program prints the hex number of the colour to the screen. Now
you have a record of all you need. To change the sprite you
position, simply alter the Sprite number in the XMouse/YMouse Do
Loop.
This is a very neat and quick programming utility, which I suppose
you could program as an accessory, if you really wanted to. What
about writing a way of saving the data in a meaningful form to a file
or the printer? Any ideas how that could be done? Thanks anyway
to Tony. This is an excellent example of what hackers call a
hamster. A short program, which is neatly and logically written and
which does something useful. Brilliant.

Rem * XSpriteYSprite.AMOS *
Rem
Cls
Erase 1

Mastering Amiga AMOS

F$=Fsel$("DFO:",“",“ Load Background Picture ")
If F$=“" Then Edit
Load Iff F$,O

SPR$=Fsel$("*.Abk",""," Load Related Sprite Bank ")
If SPR$="" Then Edit
Load SPR$,0

Get Sprite Palette
Curs Off : Paper 22 : Pen 15 : Rem - or whatever I

Locate 0,0 : Print " X Hard is “,
Locate 0,1 : Print " Y Hard is ",

Do
Sprite 9,X M0use,Y Mouse,1
Locate 20,0 : Print X Sprite(9);" “,
Locate 20,1 : Print Y Sprite(9);" ",
If Mouse Key=1 Then Goto LABEL
Loop

LABEL:
Locate 28,4 : Print "Sprite";

Locate 28,5 : Print "Register";
For C=16 To 31
Locate 28,C-9
Print Hex$(C0lour(C),3)
Next C

Locate 0,4 : Print "Screen";
Locate 0,5 : Print "Register";
Locate 0,7

i-

'-I|'n'n'-I|'I‘I-I-1JI‘F

*4.1.

-v

E.

I-

i

i

-“W——"T L-|r|||

E

FOP C=1 T0 15

Print HeX$(Colour(C),3)
Next C

Locate 0,0 : Print " X Screen is "
Locate 0,1 : Print " Y Screen is "

Locate 25,0 : Print X Screen(1);
Locate 25,1 : Print Y Screen(1);

Menu$(1)=" O to 15 "
Menu$(2)=" 16 to 31

For D=1 To 15

lfinneI1u#hlPToghmmu

Menu$(1,D)="(IN 1,"+Str$(D)-“"+“)(BA 30,12)"
Menu$(1,D,1)=Hex$(Col0ur(D),3)
Next D

For C=16 To 31
Menu$(2,C)="(IN 1,"+Str$(C)-""+")(BA 30,12)"
Menu$(2,C,1)=Hex$(Col0ur(C),3)
Next C

Menu On

Do
If Choice
Locate 28,25 : Pen 24 : Inverse On : Print
Hex$(Colour(Choice(2)),3)
End If

Loop

Mastering Amiga AMOS
|

Tony's excellent program gave me an idea, and so recently I
whipped up this next little program to show up mouse coords. I
know the thing which flummoxed me about limiting the mouse and
reading the mouse over certain points on the screen was
positioning. And this program enables you to do this very
accurately. Load an IFF picture, preferably the one you want to
locate the mouse over, and then just read the figures (and write
them down) as you move the mouse over the screen.

Rem * MouseMeUp.AMOS *
Rem
Paper O : Clw
Curs Off
F$=Fsel$("*.IFF",""," Load Background IFF Pic ")
If F$="" Then Edit

Load Iff F$,O
Locate 0,0
Print "Mouse Co-ords Tool v1.1"
Locate 0,1 : Print "X= " : Print "Y=
Locate 0,20 : Print "CTRL-C to stop"
D0

Y1=Y Mouse

X1 =X Mouse

Y1$=Str$(Y1) = X1$=Str$(X1)
Locate 6-Len(X1$),1 : Print X1 : Locate 6-Len(Y1$),2 :

Print Y1

Loop

This is a replacement for the Sort routine on page 59 of the original
AMOS manual. Graham Jones invented this routine as part of an
excellent program he wrote called Natcodes, which is currently
available as licenseware from Deja Vu. Natcodes takes the STD
codes you would dial to get a call placed to a certain part of the
country, and it tells you where that place is. In the phone book it
tells you the place and then the number. This way you can type in a
code you've dialled and find out where it was you were calling. This
nice string sort is the part of that program of which Graham was so
proud that he sent it to me in isolation, and he's right, it is a very
good sort.

Rem *
Rem

Scree
Paper
Locat

Print
Print
Print
Print
Print

Input
Print
Dim A
P=1

Repea
I

In

Until
Sort
For I

C:

AS
A$

Next
Cls
Print
For J

Pr

Next

Wait

Stringsort

n Open 0,64
0 : Clw

e 0,0
"This rout
"AMOS manu
“It can al

“<Press a

“Enter max
: Inc N

$(N)

t
nput "Enter
c P

A$(P-1)=""
A$(0)
=N-(P-2) To
I-(N-P+1)

(9)=A$(I)
(I)=""
I

"Sorted ar
=1 To N

int A$(J)
J
Key

Some Useful Programs

.AMOS * -

O,256,4,Hires

ine replaces that given in the "
al for the Sort command."
so be modyfied to use variables."

key>" : Wait Key : Cls

No. of Array values ";N '

string (Null to stop) ";A$(P)

or P=N

N

ray in ascending order." : Print

Mastering Amiga AMOS

One of the biggest criticisms of AMOS from so called serious
programmers, is that you can't leave a blank line between sections
of the program. As you know AMOS always closes up spaces
automatically, and so the common solution from AMOSers is to type
a ' for a REM statement in the line. But real programmers can't cope
with this. (You'd have thought they'd have better things to do than
whine on about things like this!) In fact you can fit a space in an
AMOS program if you really want to, and it's very simple. All you do
is press the tilde key, the ~ symbol, and voila! The tilde symbol
vanishes when you press Return, and the line stays blank. This
doesn't affect the functioning of your programs at all, and if it
keeps the serious programmers happy, it keeps me happy. Not!
You may have been browsing your AMOS manual and tried to use
what it says are two useful functions, namely:

Window Font

and:

Llist

which, so the book has it, are used in AMOS. Well, if you've tried to
use these commands you'll know they don't work, and there's a
good reason for this. The commands aren't part of the-AMOS
language. The reason behind this is that the original AMOS manual
was being written at the same time as the program, and the
program continued to be rewritten in fact, even after the manual
was finished. So perhaps these commands were intended to be in
the program, but not included at the last minute. So it's not your
fault that these commands don’t work, they don't work on anyone's
machine!
And finally Big Text, a large text printing program, which will print
up a big scrolling text message across the screen from the text in
LET$. There are ways to make this program smoother, and alter the
way it prints up its text. See if you can alter the program for more
impressive big text.

Rem * Big Text.AMOS *
Rem
LET$=" Let's hear it for AMOS!!! "
LET$=LET$+". It's a brilliant programming language, and
now with AMOS 3D and the Compiler..."
LET$=LET$+" AMOS is the best program in the WORLD!!!
That's all folks..... "
LETOFF=0

.4
J

E.-11J-ru1u—--nu—uu1uu—--nu-—

0"

 "7111-""‘“-E71l'p\-L§_7'j'_‘fi§‘-xii_,§‘I§"4'IZ'PuI|'l|'\n'-IJI——'—'

iic

Q1

Screen Open 1,416,256,4,Lowres
Def Scroll 1,0,0 To 416,256,-53,0
‘Curs Off : Flash Off
Do

_SCROLLIT
If Mouse Key=1 Then Exit
Loop
Edit

Procedure _SCROLLIT
Shared LET$,LETOFF
If LETOFF=Len(LET$) Then LETOFF=O
Screen 0 : Locate 0,0 : Print Mid$(LET$,LETOFF+1,1)
Zoom 0,0,0,8,8 To 1,352,0,400,256
Screen 1
Scroll 1
Inc LETOFF

End Proc

SonueLbefiulPrqgnmmm
IIIIIIIIIIIIIIIIIII

Mastering Amiga AMOS

C:
Program
Entry

You look at the program you
have entered time and time
again but for the life of you,
you simply cannot work out
what the problem is — the
program simply throws up
some sort of error every time
you try to run it. Frustrating
simply isn't the word — but this
is a situation that every single
programmer, beginner or
experienced, has encountered
and will continue to encounter
for the rest of their
programming life!
Jump up and down and pull
what hair you may have left out
by the roots but if the program
won't run as expected or throws
up an error, there is a mistake
and you have to track it down.
Of course, as you become a
more experienced programmer
you will learn the various
pitfalls and problems that can
occur and know what to look
for. This short appendix might
help you along the way. Let's
hope!

Entering Book Listings
OK, hands in the air. The
listings given in this book (and
in magazines etc) should work,
certainly the ones herein
because they have been lifted
from the original AMOS files
and inserted smack bang right
into the text. That's the theory
but life isn't always as it should
be and the odd gremlin can
creep in.
So the first thing to look for
when you have entered a listing
that won't work is what I would

Mastering Amiga AMOS
IIIIIIIIIIIIIIIIIIII

call obvious errors —- for example have two lines become
concatenated, ie joined together? For example, look at the program
fragment below:
Rainbow Del : Auto View Off : Hide Restore TEKST : Read N
Itnsshouklbe
Rainbow Del : Auto View Off : Hide
Restore TEKST : Read N

The two lines have become one and AMOS would not recognise:
Hide Restore TEKST

as a legitimate command. The converse is also true in that a line
might have become split into two at a point which makes no sense
to the AMOS interpreter when it tries to use it. For example:
Rainbow Del : Auto :
View Off : Hide
Restore TEKST : Read N

These examples are a bit exaggerated perhaps but they illustrate
the point.
Another point to bear in mind is that listing lines are quite often
much longer than the available width of the page on which they are
printed — therefore wrap around will take place and this might
confuse you into thinking that there are two lines when in reality
there is only one. In other words you whack the Return key when
there isn't the need to.
In such instances you must be guided by the style employed by the
book or listing. In Mastering Amiga AMOS there is always a very
clear line space between each line of listing. Look at this listing
segment:
Screen Open 1,320,200,2,Lowres : Screen Hide 1

TWENTY:
F$=Fse1$("","","Load IFF Picture To SPACK") : If F$=""
Then Goto TWENTY
If Exist(F$) Then Screen O : Centre "Loading IFF Picture"
: Print : Load Iff F$,1 : Else Goto TWENTY
Screen 0 : Centre "Spacking Current Picture..." : Print :
Spack 1 To 6 : Screen Close 1

Program Entry
 .

Although the listing takes ten lines in the book, it is in fact only
seven lines in length. The first three lines are clear and obvious,
but the next three lines are all too long to fit on a single line width
of the printed page and therefore wrap around. However, if you
examine the listing you will see that there is almost a full line
space between each actual listing line and this should be your
guide.

Visual Errors
Apart from the obvious errors such as the misspelling of
commands and so forth the other major players under this heading
are the misinterpretation of Zero and Oh, One and El and colons
and semi-colons. Here is how each one appears in our printed
listings:

O O
1 l

Another character that can cause problems is the space character.
Spaces are invariably important - or more specifically the lack of a
space can be a problem.
The listings in this book are all produced in what is known as a
mono spaced font, which means that a space will occupy the same
amount of the line as an i or e. Watch out for them and treat them
with respect.
Brackets can create problems - ensure you have the right number
of them, ie for every left bracket there must be a matching right
bracket and so forth.

Mastering Amiga AMOS

oea
D:
The ASCII
Character
Set

ASCII (an acronym for The
American Standard Code for
Information Interchange)
consists of a set of 96
displayable and 32 non-
displayable characters based
on a seven bit character code.
Direct ASCII code values are
sometimes needed within a
program, yet very few people
bother to remember more
than a handful of values
(space, carriage return,
linefeed, tab etc).
Since most programmers look
up ASCII values, rather than
going to the trouble of
learning them parrot fashion,
we thought it would be useful
to include the necessary
details. Hopefully we have
gone one better than that
because three equivalents -
decimal, hexadecimal and
binary - have been provided.
This means, incidentally that,
as well as having the ASCII
data itself, you have also
acquired a reasonably useful
(0-127 decimal) binary-hex-
decimal conversion table.

Mastering Amiga AMOS

Decimal Hex Binary ASCII
000 0000
000 0001
000 0010
000 0011
000 0100
000 0101
000 0110
000 0111
0001000
0001001
0001010
0001011
0001100
0001101
0001110
0001111
001 0000
0010001
0010010
001 0011
001 0100
0010101
001 0110
001 0111
001 1000
001 1001
001 1010
001 1011
001 1100
001 1101
001 1110
001 1111
010 0000

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI

DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM

SUB
ESC
FS
GS
RS
US
SP

0100001
0100010
0100011
0100100
0100101
0100110
0100111
0101000
0101001
0101010
0101011
0101100
0101101
0101110
0101111
0110000
0110001
0110010
0110011
0110100
0110101
0110110
0110111
0111000
0111001
0111010
0111011
0111100
0111101
0111110
0111111
1000000
1000001

Decimal Hex Binary ASCII
!

1-1-

~Q=aR~'=e=n=

(
I
‘k

+

§.OO0‘\IO'§U'l-I‘-‘~UJl\Jl-*©"\

<

>
?
@
A

1000010
1000011
1000100
1000101
1000110
1000111
1001000
1001001
1001010
1001011
1001100
1001101
1001110
1001111
1010000
1010001
1010010
1010011
1010100
1010101
1010110
1010111
1011000
1011001
1011010
1011011
1011100
1011101
1011110
1011111
1100000
1100001
110 0010

B
C

>-./-—-—N—<><E<C.'-—Iw7v,O'-oOZZr""'7<t—-—-IC7'-=-irT1U

a
b

1100011
1100100
1100101
1100110
1100111
1101000
1101001
1101010
1101011
1101100
1101101
1101110
1101111
1110000
1110001
1110010
1110011
1110100
1110101
1110110
1110111
1111000
1111001
1111010
1111011
1111100
1111101
1111110
1111111

The ASCII Character Set

Decimal Hex Binary ASCII Decimal Hex Binary ASCII
c
d
e
f
8
h
i

I
k
1

I11

II

O

D
Q
r
S

I

U

V

W

X

--V-Ii»--~N-<

--I

DEL

Mastering Amiga AMOS
i

B-uglnnuru
Wurirhunu=l1

Prlllrl-nnl-l

astering
Amiga
Guides

Bruce Smith Books are
dedicated to producing
quality Amiga publications
which are both comprehensive
and easy to read. Our Amiga
titles are being written by
some of the best known
names in the marvellous
world of Amiga computing.
Below you will find details of
all our currently available
books for the Amiga owner.
Depending on when you read
this, you may be able to buy
our companion AMOS volume,
an A to Z reference of
everything to do with AMOS,
commands, examples, hints
and tips. Give us a call or ask
for our catalogue for details
on availability.
Titles Currently Available
1- Mastering Amiga

Workbench2
~ Mastering AmigaDOS Vol. 1
' Mastering AmigaDOS Vol. 2
' Amiga Gamer's Guide
~ Mastering Amiga Beginners
¢ Mastering Amiga C
~ Mastering Amiga Printers
~ Mastering Amiga System
~ Mastering Amiga Assembler
~ Mastering Amiga ARexx
' Amiga A600 Insider Guide
~ Amiga A1200 Insider Guide

Mastering Amiga AMOS

Brief details of these guides along with review segments are given
below. If you would like a free copy of our catalogue Mastering
Amiga News and to be placed on our mailing list then phone or
write to the address below.
Our mailing list is used exclusively to inform readers of
forthcoming Bruce Smith Books publications along with special
introductory offers which normally take the form of a free software
disk when ordering the publication direct from us.

Bruce Smith Books,
PO Box 382,
St. Albans, Herts, AL2 3JD
Telephone: (0923) 894355
Fax: (0923) 894366

Note that we offer a 24-hour telephone answer system so that you
can place your order direct by ‘phone at a time to suit yourself.
When ordering by ‘phone please:

~ Speak clearly and slowly
~ Leave your full name and full address
~ Leave a day-time contact phone number
' Give your credit card number and expiry date
~ Spell out any unusual names

Note that we do not charge for P&P in the UK and endeavour to
dispatch all books within 24-hours.

Buying at your Bookshop
All our books can be obtained via your local bookshops — this
includes WH Smiths which will be keeping a stock of some of our
titles, just enquire at their counter. if you wish to order via your
local High Street bookshop you will need to supply the book name,
author, publisher, price and ISBN number.
.-

Overseas Orders
Please add £3 per book (Europe) or £6 per book (outside Europe) to
cover postage and packing. Pay by sterling cheque or by Access,
Visa or Mastercard. Post, Fax or Phone your order to us.

Dealer Enquiries
Our distributor is Computer Bookshops Ltd who keep a good stock
of all our titles. Call their Customer Services Department for best
terms on 021-706-1188.

Mastering Amiga Guides

Compatibility
We endeavour to ensure that all Mastering Amiga books are fully
compatible with all Amiga models and all releases of AmigaDOS and
Workbench.
NEW! Great value! 368 pages for £14.95.
Amiga Gamer’s Guide by Dan Slingsby
Everyone loves games and Amiga games are growing in
sophistication, always setting new playing challenges while
introducing ever more gasp-producing graphics and sound effects.
Even the techies at Bruce Smith Books are not immune to the games
phenomenon. This latest book for the discerning Amiga owner, is a
highly illustrated guide to your favourite Amiga games, including
classics like Shadow of the Beast and recent top ten hits like Putty,
Formula One Grand Prix, Streetfighter 2 and Indiana Jones.
From sports sims to arcade adventures, Amiga Gamer’s Guide gives
you the hints and tips, hidden screens and puzzle solutions which
you are looking for. Completed by a massive A to Z of tips and
tricks for over 300 games, Amiga Gamer’s Guide is the most
masterful of games guides yet published.
Written by CU Amiga editor Dan Slingsby, Amiga Gamer’s Guide
contains a wealth of background information to the most popular
Amiga games. The graphically appealing layout with hundreds of
pictures used to illustrate the games and their story lines, makes
this one of the most attactive Amiga books to be found on the
bookshelves.
The games featured, with full scenarios, hints and tips and
solutions are:
Another World; Chaos Strikes Back; Dungeon Master; Elvira 2; Epic;
Formula One Grand Prix; Gobliiins; Indiana Jones & the Fate of
Atlantis; Ishar; John Madden American Football; Kickoff 2; Lure of
the Temptress; Monkey Island 2; Populous 2; Project X; Putty;
Robocod; Sensible Soccer; Shadow of the Beast 1, 2 and 3; Speedball
2; Streetfighter 2; Striker; Supremacy; Zak Mcl(racken.

Amiga Gamer’s Guide
by Dan Slingsby
ISBN: 1-873308-16--7, price £14.95, 368 pages.

Mastering Amiga AMOS

M.-~ Mastering AmigaDOS 2
Our 700-page plus dual volume set covers all versions of AmigaDOS
from 1.2, including 1.2, 1.3, 1.3.2 and 2.x. Volume One is a
complete tutorial for AmigaDOS users, both beginners and experts
alike. Volume Two is a detailed and comprehensive reference to all
AmigaDOS commands.
Here’s what the press said.
“If you’re a complete beginner or unsure of a few areas, this book is
an amazingly informative read. " Amiga Format on Volume One
"As a reference book it’s very useful. So far as l know there isn’t any
similar book...If you need to know how every AmigaDOS command

_ works get this book...it is a definitive reference” Amiga Format on
Volume Two.
“The Reference book that Commodore forgot to commission" Keith
Pomfret of New Computer Express on Volume Two.
‘The book can be strongly recommended....and even more strongly
to those having difficulty getting to grips with its various commands.
You won't find a better guide to, or a more useful book on, the Amiga
than this" Micronet AmigaBASE.
“No other authors have investigated AmigaDOS with the
thoroughness of Smith and Smiddy and every page provides useful
information. Put off getting that new game, and buy this instead.
You won’t regret it. " Micronet AmigaBASE.
And if you don’t know if you need either or both books here is what
Amiga Format suggested: “If Volume 1 is so good what is the point of

- having Volume 2? Volume 1 is a tutorial, it teaches you how to use
AmigaDOS. Volume 2 is more of a manual. “

Mastering AmigaDOS 2 Volume One - Revised Edition
by Bruce Smith and Mark Smiddy
ISBN: 1-873308-10-8, price £21.95, 416 pages.
FREE Utilities disk when ordered direct — £1.50 to cover p&p
otherwise.
Mastering AmigaDOS 2 Volume Two - Revised Edition
by Bruce Smith and Mark Smiddy
Foreword by Barry Thurston, Technical Director, Commodore
Business Machines (UK) Ltd.
ISBN: 1-873308-09-4, price £19.95, 368 pages.

Mastering Amiga Guides
 ,

Mastering Amiga O
C is without doubt one of the most powerful programming
languages ever created, and it has a very special relationship with
the Commodore Amiga. Much of the Amiga’s operating system
software was written using C and almost all of the Amiga technical
reference books assume some proficiency in the language.
Paul Overaa has been writing about C and the Amiga for as long as
the machine has been in existence. He knows the Amiga-specific
pitfalls that can plague the beginner, knows how to avoid them, and
above all he knows about C. Best of all he's prepared to share that
experience. The result is a book which is guaranteed to get the
Amiga owner programming in C as quickly and as painlessly as
possible.
This introductory text assumes no prior knowledge of C and covers
all the major compilers, including Lattice/SAS and Aztec. What is
more it also covers NorthC — the Charityware compiler — so that
anyone who is interested in learning C can do so for just a few
pounds. This book assumes no prior knowledge of C and features:

~ Easy to follow tutorials
~ All major C compilers
~ Explanations of special Amiga C features
~ Amiga problem areas
v Debugging and testing

Here's what CU Amiga thought of Mastering Amiga C: ‘This book has
been written with the absolute novice in mind. lt doesn't baffle with
jargon and slang”.
Writing in Amiga User International, Mike Nelson called Mastering
Amiga C: “Very thorough, Paul Overaa has gone to considerable
lengths to keep up to date with developments the in real world of C
and the ANSI Standards.... ..this book will go a long way to help you
master C on your Amiga”.

Mastering Amiga O
by Paul Overaa
ISBN: 1-873308-04-6, price £19.95, 320 pages.
FREE Programs Disk and NorthC Public Domain compiler when
ordered direct from Bruce Smith Books.

Mastering Amiga AMOS

Mastering Amiga Beginners
The Amiga has enjoyed a phenomenal success over recent years
and is now recognised as one of the most powerful and
sophisticated personal computers available. The appeal of the
Amiga, along with the vast range of programs available for it, has
made it the ideal machine for the beginner.
lf you have recently purchased an Amiga of any type, or have had
one for some time but now feel you are still not getting to grips
with what lies behind that keyboard then this is definitely the book
for you!
This book will take you step by step through every aspect of its
use, from disks and disk drives to AmigaDOS and the many extras
available to it. It does so in a logical manner, introducing items as
and when they are needed so as to become a powerful torchlight
through the fog of computer jargon.
The first section of the book holds your hand as you tackle file
copying, running programs, configuring your computer, setting up
your printer, managing your floppy disks and hard drive.
Preferences, Commodities Exchange, utilities, fonts, CrossDOS and
all the vital functions for day to day computing with the Amiga are
covered. There's even an AmigaDOS primer and an introduction to
what programming is all about. The second section of the book
deals with the wider world of the Amiga, with graphics, paint
programs, desktop video, CDs, sound and music, comms,
databases, wordprocessing spreadsheets, desktop publishing,
viruses, monitor and printer types, hard drives, scanners,
digitisers, input devices, In short, everything you need to get you
up to speed on your new Amiga.
This book will not make you an expert in any one particular subject
but it will provide you with a solid grounding to allow you to
investigate those areas which appeal to you, either on your own or
with another book from the ever growing Mastering Amiga series of
publications.
Added to this, if you order direct from us you can choose a free
disk of PD software. Choose from a Wordprocessor (including spell
check) or a Games Compendium. State which when you order.

Mastering Amiga Beginners
by Bruce Smith and Mark Webb
ISBN: 1-873308-17-5 - Price £19.95, 320 pages.

Mastering Amiga Guides

Mastering Amiga Printers
Next to the Amiga itself, your printer is the largest and most
important purchase you’re likely to make. It's surprising then, that
so little help is available for those about to take this step, whether
it be for the first time, or for the purpose of upgrading from an old,
trusted but limited model to one of today's much more versatile
and complex machines. The problem of course is that you can't take
one home on trial to find out what it does.
Today's printers are extremely sophisticated and complex devices,
with a wide range of capabilities, so it’s all too easy to make a
mistake at the stage of buying if you don't know what to look for,
the right questions to ask and the sort of comparisons to make
between similarly priced models from different manufacturers.
Since a printer is such a large investment, quite possibly more
expensive than the micro itself, choosing the right type and model
for your needs is doubly important, because you'll have to live with
your decision for a long time.
Unfortunately for the user, neither computer nor printer
manufacturers see it as their responsibility to offer guidance or
assistance to users in this important purchase.
Mastering Amiga Printers fills this gap perfectly. Making no
assumptions about previous printer experience, the explanations
begin with the basic principles of how printers work, including a
run-down of the different types most commonly used with home
and business micros.
After a comprehensive grounding in the abilities and methods of
the different types of printer hardware you'll then learn how to
install them in the Amiga. Preference selections and printer drivers
are thoroughly explained for both Workbench one and two, so you’ll
know not only which choices to make, but what they mean. There's
also a thorough grounding in the direct use of printers from the
command line, which you’ll need if you want to write your own
programs.
Additional chapters take a logical approach to trouble-shooting and
routine maintenance, vital to the newcomer. These chapters include
the sort of information and knowledge which is normally only
available after long experience, the very thing the new user lacks.
Mastering Amiga Printers is a must for every user who wants to the
best out of their Amiga and its printer.
Mastering Amiga Printers
by Robin Burton
ISBN: 1-873308-O5-1, price £19.95, 336 pages.
FREE utilities and printer drivers disk when ordered direct from
Bruce Smith Books.

Mastering Amiga AMOS

Mastering Amiga Workbench 2
The Workbench is one of the most important aspects of the Amiga,
yet so few users really understand how to use it to its full potential.
From it you can access virtually all of the Amiga’s functions and
determine how your computer will operate from the moment it is
switched on. With the advent of Workbench 2, running under the
much enhanced AmigaDOS 2, the options open to the Workbench
users are greater than ever before.
In this book Bruce Smith explains everything you will want to know
about the Workbench version 2.x, using screen illustrations
throughout for ease of reference. The book is geared towards all
types of users, whether you have a single floppy disk or a hard disk
to operate from.
Starting from first steps the book explains the philosophy of the
Workbench and how it ties in with your Amiga. It then moves on to
describe the best way to perform basic housekeeping tasks such as
disk copying, file transfer and how to customise your own
Workbench disks for different occasions and requirements.
The author works his way through each of the menu options with
full descriptions of their use, providing many hints, tips and tricks
en-route. By this stage you will already be an accomplished
Workbench user, but as the books enters its final stages you will
make the transition to expert status as areas such as Preferences,
Tools and Commodities are fully explained.
In effect Mastering Amiga Workbench 2 provides you with a
complete guide to your Workbench and Extras disks in an easy to
read style guaranteed to upgrade you to full proficiency on y-our
Amiga.

Mastering Amiga Workbench
by Bruce Smith
ISBN: 1-873308-O8-6, price £19.95, 320 pages.

Mastering Amiga Guides

Mastering Amiga System I
A complete tutorial to Amiga System programming with copious
examples. A basic knowledge of C is required but the book begins
with short examples which only later build into full-scale programs.
Serious Amiga programmers need to use the Amiga’s operating
system to write legal, portable and efficient programs. But it's not
easy! Paul Overaa shares his experience in this introduction to
system programming in the C language, the natural language for
getting the best out of the Amiga. And there's a free programs disk
included in the price with lots of examples and utilities.
Readers will learn how to communicate with the system, how to
handle tasks and processes and work with libraries and how to
incorporate IFF graphics into their own applications. They will also
find out how to harness the power of Intuition, the routines behind
the Amiga’s classic graphical interface. At no time is the reader left
to produce code from general explanations. The author keeps it
specific and presents skeleton programs which are fully
documented so that they can be followed by the newcomer to
Amiga programming. The larger programs are fully~fledged
examples which can serve as templates for the reader's own ideas
as confidence is gained.
Paul Overaa spells it out in a step by step fashion as he proceeds to
explain devices and the custom chips which make the Amiga the all-
time great graphical microcomputer. In dealing with a difficult
subject, Paul Overaa has avoided merely duplicating standard
documentation. Instead he has entered on a journey through the
different aspects of the Amiga’s system, finding the safest and most
effective routes to practical programs. Mastering Amiga System is
an invaluable purchase for the Amiga programmer who wants to
master the system software.
The free disk which accompanies this book contains both source
code and runable versions for all of the programs discussed within
the text. In addition to this, a number of document files have been
provided which deal with compilers and compiling, ANSI C and I<&R
C (including notes on ANSI C <-> l<&R C program conversion),
header files and guru numbers. As well as the tutorial style
examples, the disk also contains a number of utility programs
including a MIDI message analyser, a generalised minterm
expression evaluator, and a recursive search disk routine that could
be used as the basis of a number of disk catalogue programs.
Source code files for each of these utilities have been provided.

Mastering Amiga System
by Paul Overaa
ISBN: 1-873308-06-X, price £29.95, 398 pages.
FREE progams disk when ordered direct from Bruce Smith Books.

Mastering Amiga AMOS
i

Mastering Amiga Assembler
Although the 68000 processor series is well-documented, the use of
assembly language to write efficient code within the unique
environment of the Amiga is only now explained in this hands-on
tutorial. It teaches how to generate machine code from the popular
Amiga assemblers, all of which are supported by the many program
examples in this book. These programs also appear as source code
and runable programs on the free support disk.
The Amiga is a powerful machine but the sheer complexity of its
operating system has provided a major obstacle to many
programmers wishing to enter the world of Amiga assembly
language programming. Mastering Amiga Assembler holds the
reader's hand, introducing topics through short examples, with
diagrammatic explanation where necessary. Longer programs of a
practical nature come only later, as the required techniques are
practised and mastered.
Topics covered include:
~ Fundamental assembly language concepts.
I The 68000 processor and its important instructions.
- The 68000 addressing modes.
~ Use of system header files and the official Amiga

documentation.
~ Working with the Amiga libraries.
' CLI/Shell and Workbench programming.
~ Low-level Intuition and graphics programming.
~ Introductions to some advanced topics including Exec

interrupts and mixed code programming.
~ Details of popular assembler environments including HiSoft's

Devpac and the PD 68K assembler.

Mastering Amiga Assembler
by Paul Overaa
ISBN: 1-873308-11-6, price £24.95, 416 pages.
FREE disk with programs from the book and extra utilities when
ordered direct from Bruce Smith Books.

Mastering Amiga Guides

Mastering Amiga ARexx
ARexx is the Amiga version of the REXX programming language
Commodore have adopted as part of Workbench 2/3. With this sort
of official endorsement ARexx is set for a very bright future and
Amiga users are now asking the questions: Is ARexx a replacement
for AmigaBASlC? Can ARexx replace AmigaDOS? Can real programs
be written with ARexx? How does ARexx allow programs to talk to
each other? In short, people want to know what ARexx is and how it
can be used. It is exactly these types of question for which this
book provides the answers!
ARexx is in many ways an unusual programming language. For a
start it is easy to learn and even those new to the Amiga soon find
that simple ARexx script programs give added weight to an already
powerful operating system.
The creator of ARexx is Bill Hawes and the general consensus is that
his initial interpretation of the REXX language and the subsequent
programming has been nigh-on faultless. This has resulted in ARexx
being one of those relatively rare third party products officially
endorsed by Commodore. ARexx is of course now provided as part
of Workbench 2 and 3 but it has been happily running on the Amiga
through both 1.2 and 1.3 versions of the operating system. Even
nowadays you do not need to be a Workbench 2 user to benefit
from ARexx because ARexx is still available as a separate package
This latest guide to ARexx is from programming expert Paul Overaa
and is guaranteed to get the Amiga owner into the world of ARexx
programming quickly, productively and enjoyably.
Topics covered include: how to install ARexx on any Amiga,
introductions to the ARexx language and comparisons with
languages like BASIC, in depth discussions of the ARexx language's
main features, explanations of how ARexx is used to control other
programs, details of ARexx's built-in functions and support
libraries, methods for creating well structured ARexx programs,
introductions to many advanced ARexx programming topics plus
tips and tricks, programming and debugging guidelines, tutorials,
and much more.
When ordered direct from Bruce Smith Books, Mastering Amiga
ARexx also comes with a free support disk containing the many
example programs from the book.

Mastering Amiga ARexx
by Paul Overaa
ISBN: 1-873308-13-2, price £21.95, 336 pages.
FREE disk with program examples and utilities when ordered direct
from Bruce Smith Books.

Mastering Amiga AMOS
'

Amiga A600 Insider Guide
A perfect companion for all A600 and A600HD users. This book
provides you with a unique insight into the use of Workbench and
AmigaDOS on all versions of the Amiga A600.
Assuming no prior knowledge it shows you how to get the very best
from your machine in a friendly manner and using its unique
Insider Guide steps (see A1200 description below).

Amiga A600 Insider Guide
by Bruce Smith
ISBN: 1-873308-14-0, price £14.95, 256 pages.

Amiga A1 200 Insider Guide
Assuming no prior knowledge, it shows you how to get the very
best from your A1200 in a friendly manner and using its unique
Insider Guide steps. Configuring your system for printer, keyboard,
Workbench colours, use of Commodities and much much more has
made this the best-selling book for the A1200.
As well as easy to read explanations of how to get to grips with the
Amiga, the book features 55 of the unique Insider Guides, each of
which displays graphically a set of step by step instructions. Each
Insider Guide concentrates on a especially important or common
task which the user has to carry out on the Amiga.The disks which
come with the A1200 contain a wealth of utilities and resources
which allow you to configure the computer for your own way of
working. The step by step tutorials take you through using these
point by point, anticipating any problems as they go. There are also
fully fledged programs such as MultiView and ED which can seem
impenetrable for the new user but which become clear when
observed in use over the shoulder of author Bruce Smith.
Great new features such as the colour wheel, lntellifonts, using
MSDOS disks with CrossDos and configuring sound are dealt with in
detail. A useful appendix acts as a file locater so that any of the
many files on the Amiga disks can be quickly found.

Amiga A1 200 Insider Guide
by Bruce Smith
ISBN: 1-873308-15-9, price £14.95, 256 pages.

New publications and their contents are subject to change without
notice.
E&OE.

er
Index

A
ABK files31, 40, 46, 165
Ac.New/Load26
ACMP193
Advanced AMAL140
Advanced Menus185
AMAL22, 45, 97, 108, 129
AMAL channels130, 143
AMAL commands
........................ ..130,131,132
AMAL Editor132, 142

AMAL vs Compiler194
AMAL On130, 134
AMAS 2167
AMOS 3D34, 201
AMOS 3D Commands204
AMOS Assembler184
AMOS Compiler.....19, 34, 193
AMOS Editor23
AMOS Error messages245
AMOS OM34, 202
AMOS Sprite Editor233
AMOS TOME35, 223
Amos To Back182
Amos To Front182
Animation22, 107
Animation Studio, The108
Appear99
Asc "127
Autotest149

Mastering Amiga AMOS

B
Bar .. "51
Blitter Objects106
Bload169
Block Cut26
Block End26
Block Hide27
Block Move27
Block Past26
Block Print27
Block Save27
Block Start26
Block Store27
Blocks158
Blocks Menu24, 26
Bobcol .. "109
Bobs105, 212
Bobspritecol109
Box
Bullets114

C
CBlock
Change Mouse118
Chaos Theory84
Chr$127
Chne .. "187
Close All28
Collision Detection109
Compile196
Compiler Front End
Compiler Options196

50

160

197

Compiler Versions216
Compiler.AMOS197
Compressing graphics32
Computer graphics50
Config.AMOS34
Configuration225
Configuring TOME227
Copper ... "49
CText74, 215
CText Commands219
CText fonts216, 217
Cup .. "187
Curs Off74
Cursors74, 186

D
Data40
Datel Action Replay165
DCTV.. ..92
Deek183
Def Scroll93
Default Configuration
Degrees81
Dir$41, 177
Direct Mode3l, 177
Directories175
Disk Operations175
Do Loop41
Doke ... "183
DPaint 4157
Drives175
Drum Sounds172
Dual Playfield94

index
_

225 l

Mastering Amiga AMOS
i

E
Easy AMOS209
Easy AMOS Disk214

I Easy AMOS Editor210
Easy AMOS Tutor210
Editor Commands23
Environment Editor143
Environment Variables145
Extended Basics22

F’
Fade ... "98
Find27
Find Next28
Find Top28
Fold/Unfold25, 40
Folding PROCs4o
Fontsetter222
Fractal Geometry84

(3

GetFont ... "72
Get Icon Palette219
Get Sprite107

Global44
Grabber237
Graphic Text72

| GUI65

H
HAM ... H91
HAM-E92
Hex to Bin183

Get Block160

Hide
Hold and Modify ..
Hypertext

I
I/O ... "175

.. ..155

.. ..24
Ink.. ..72

.. ..126

.. ..175
Installing TOME224

... ..92

Icons H
Indent H

lnkey$
Input/Output

Interlaced Screens

J
Jdown................. ..

Joy
jright
Jup

K
Karafonts
Keyboard input....
Keywords

L
Leek H
Limit Mouse
Line Insert
Lionet, Francois
Listbank
Llist
Load H

.. ..117

.. ..91

.. ..78

.. ..123
Jleft 123

.. ..123

.. ..123

.. ..123

.. ..183

.. ..12O

.. ..25

.. ..17

.. ..33

.. ..178

.. ..25

index
it

.. ..222

.. ..126

.. ..2l

Mastering Amiga AMOS

Load Others26
Local .. "41

I Lock.AMOS40
Logical Devices176
Logical Screen94
Loke ... "183
Low<>Up28

M
Machine Code183
Making CText fonts221
Mandelbrot, Benoit B.84
MAP Commands228

| Mathemetics80
80Maths Libraries

MED164
Memory banks31, 32
Menu75
Menu On76

| Menu Shortcuts29, 30
Menu$75
Merge25
Merge ASCII25
Mouse pointer116

| Multitasking182
Music163
Music Engine166

N
NEO Converter190
NEOchrome191

I New26
New Others26

NlC€l'l€SS236
No Icon Mask219
Noisetracker

O
Object movement
OctaMED
OM
OM Objects
On Menu On
Open All
Open Port
Optimised Commands
Overwrite

P
Paper H

I I I I l I I I U U I U U I I I I I I I I II

I ‘ . . U Q II

I Q II

I I I I U U C I I I I I C I I I I I I I I I I I I I I I II

I 0 | I u | I I I I I I I U I I I I Q I I I I I I I I I II

I I O O C I I I I I I I I I I l I I I I I I I I l I I I I I l l I I I I I I I I II

I I I I I D I I I I I C I I I I O I I I I I I I I I I I D I I I I I I I I I I I I I I I II

Parallax Scrolling
Parameter definitions
Path
Pattern

I l Q U I 0 I U l Q n Q u u u u u I n n Q Q Q 1 Q u Q Q Q | Q Q Q Q | II

l I I I O I I I ! I I I I I I I I O I l I I I I I I I I I l I 0 I I I Q I I I I I I I I I II

Pattern Editors
Peek ... H
Pen
Perfect Sound

. . I I . . Q I . I I I I I I I . I I I I Q Q I Q I I I Q.

I I I I I I I I I I I I I I I I Q O I I I I Q Q I I I I I I Q I I I [Q Q I I I I Q I I I Q I I IQ

‘ I I I I I I I I I I I I I Q I Q . I I . I l Q . Q I I I I ‘I

.... ..164

.... ..117

.... ..165

34. 202

.... ..203

...... ..76

...... ..28

.... ..180 |

...... ..22

...... ..25

...... ..73

...... ..94

...... ..44

.... ..17S

...... ..52

.... ..164

.... ..183

...... ..72

.... ..l68
Pl ..81

PI# ..82

Play
Plotters
Plotting

I U Q I U II

. . ' - . I Q M ' II143

... ..50

................. ..50

Poke ... "183
Polygon53

Polyline54

index
_

Mastering Amiga AMOS

Pop ... "45
Ports1 79

I Procedures38
PROCs38
Productivity Mode92

Protracker164

O
R Quit26

R
Radians81
Rainbow59
Rainbow Text61
Rainbow Warrior59
RAMOS81, 198
Random Filesl78
Resizing Windows67

Repeat Until41
Replace28
Replace All28
Reserve Zone69
Run .. "24,177
Run Other25

sI
Sam Play169
Sampled Sounds163
Sampling167
Save25

Program Structures37

Put Block160

Read40

Sam Loop On170

Save As25
Save ASCII27
Scancode127, 173, 179
Screen Clone97
Screen Copy93, 126, 147
Screen Display96, 147
Screen Offset147
Screen Open91
Screen Swap93
Screens91
Scroll93
Scrolling Screens146
Search Menu24, 27
SequenualFHes .. "178
Set Curs74
Set Font72
Set Tab28
Set Text B.28
Set Wave171
Shared44
Shuffle extension127
SIN82
Sine Waves82
Sliders70
Sound Chip171
Sound Effects163
Soundtracker164
Spack ... "33,34
Special Effects98
Speech189
Splerge102
Sprite 600152

index

Mastering Amiga AMOS

Sprite Animation133, 238
Sprite banks113
Sprite Movement109, 133
Spruebobcol .. "109
Spritecol109
Sprites105
SpriteX 2158, 239
SpriteX135, 156, 233
Starfields54

STOS18
Subprograms38
Synchro Off.. ..139

i Syntax21
: System Menu25

T
Test24
Text7'1, 72
Tiles156, 224
TOME Commands227
TOME Editor226

Tracker files32
Trackers164
Trigonometry82

U
Unpack33, 34
Update152
Using 3D Objects203
Using Compiler195

Stereo Master167

TOME Series 423O

Tutor210

Using CText
Using the mouse

V
Variable Types
Variables43
Vectors
Vumeter132

W
Wait Vbl

Wind Open

Window Font
Windows

X
XHard121

.. ..12O

.. ..l2l

X Mouse
X Screen

Y
Y Hard121
Y Mouse120
Y Screen121

.. ..217

.. ..3O

.................. ..47

....................... ..86

.. ..108
While Wend41
WIMP

.. ..66
Wind Save68

.................................... ..72
................. ..65

............ ..65

index
—

Mastering Amiga AMOS

index
i

Mastering Amiga AMOS
i

ZI$—C—IIZ—I——ZZ—$_1$I——$SI$—$'_$$$—I——I=$$_—$ZQ=—$IZZ$——|—-1$$—_|B<=$ZQ|—tt_rm_r—$—m'mm——Qmm_——_mmm——Q11mQ—_|—§$——QQmm——mmmZ——_$Q$—Q$m#Q_——$§

Book Order Form
 _

Book Order Form
Full details of current books can be found in our Amiga Books
appendix. Please rush me the following Bruce Smith Books books:

Amiga Gamer’s Guide @ £14.95 £
Mastering AmigaDOS Vol. One Revised Edition @ £21.95 £
Mastering AmigaDOS Vol. Two Revised Edition @ £19.95 £

Mastering Amiga Workbench 2 @ £19.95 £

Mastering Amiga Beginners @ £19.95 £

Mastering Amiga Printers @ £19.95 with PD Disk £
Mastering Amiga C @ £19.95 with Scripts & PD NorthC Disk £
Mastering Amiga System @ £29.95 with Programs Disk £

Mastering Amiga Assembler @ £24.95 with Programs Disk £

Mastering Amiga ARexx @ £21.95 with Programs Disk £

A600 Insider Guide @ £14.95 £

A1200lnsider Guide @ £14.95 £

Postage (International Orders Only): £

Total: £

l enclose a Cheque/Postal Orderi‘ for £ p.

I wish to pay by Access/Visa/Mastercardi‘

can number II2—II_III
Expiry Date:

Name.

Address.

.. .. Post

Contact phone number.

Signed

*Delete as appropriate. Cheques payable to Bruce Smith Books Ltd. E&OE
Send your order to
Bruce Smith Books Ltd, FREEPOST 242, PO Box 382, St. Albans, Herts, AL2 3BR. N

Mastering Amiga AMOS
AMOS has revolutionised all forms of programming on the Amiga. What is more it
has made it possible for every Amiga owner to create stunning sound and graphics
with the absolute minimum of fuss. lt’s great for games, education and even for
presenting serious programs and utilities.
AMOS is a programming language and, like most programming languages, it takes
a little time to learn. Phil South has been writing about AMOS since its launch and
is well aware of the problems and pitfalls that can face both new and experienced
Amiga users. Mastering Amiga AMOS helps you to avoid these by providing a step
by step tutorial to the AMOS family and describes hints, tips and shortcuts which
normally take many hours in front of the keyboard to discover.
Mastering Amiga AMOS starts from basic principles before moving into more
adventurous pursuits, covering all aspects of AMOS programming with many
examples for you to type in and try for yourself. This enlarged and revised edition
has more programs than ever before and includes tutorials on:
0 Windows, Text and Menus
0 Screens, Sprites and Bobs
0 Icons and Screen Blocks
0 Music and Sound
0 Object Movement
0 Sprite X, CText and TOME
0 AMOS Compiler and 30 ISBN 1_87330B_19_1

Mastering Amiga AMOS I 1 I I
Covers AMOS, Easy AMOS and AMOS Professional

£1 9 a1e oe19's

